期刊文献+

基于BP神经网络的煤粉锅炉飞灰含碳量研究 被引量:25

The Investigation of Carbon Content in Fly Ash for a BP Neural Network-based Pulverized Coal-fired Boiler
在线阅读 下载PDF
导出
摘要 飞灰含碳量是反映电站煤粉锅炉燃烧效率的一个重要指标。基于误差反向传播(BP)神经网络方法,建立了11-23-1型BP神经网络模型。根据某电站四角切圆煤粉锅炉特点选取了煤粉细度、燃烧器摆角、烟气含氧量、5个煤种参数、燃烧器喷口运行组合等11个影响燃烧的参数作为神经网络的输入因子,对建立的模型进行训练,得到模型参数。以此进行预测,与实际值的误差不超过6%。在此基础上,又提出了单参数影响飞灰含碳量的简化分析方法,使神经网络包含的多维非线性规律在一定条件下简洁、直观地反映出来。计算和分析结果表明,本模型方法能有效提取各参数对飞灰含碳量的影响规律,可用于锅炉飞灰含碳量的分析、预测和优化调节。 Carbon content in fly ash is a major index, which reflects the combustion efficiency of a pulverized coal-fired utility boiler. On the basis of a BP (inverse propagation of error) neural network method set up was a 11-23-1 type BP neural network model. In accordance with the specific features of a four-corner tangentially fired pulverized-coal utility boiler 11 parameters which can influence combustion have been selected to serve as input factors of the neural network. The parameters include: pulverized coal fineness, burner tilting angle, oxygen content in flue gas, parameters of 5 ranks of coal, operation combination of burner spray nozzles, etc. A training course was conducted for the established model and model parameters were obtained. The error predicted by using the model is less than 6% when compared with actual values. On this basis the authors have also proposed a simplified method for analyzing the carbon content in fly ash, which may be affected by a single parameter. This makes it possible to attain under certain conditions a concise and intuitive reflection of multi-dimensional non-linear law contained in the network. The results of the calculation and analysis indicate that the model-based method can effectively identify the mechanism of various parameters in influencing the carbon content in fly ash and may be employed to conduct the analysis, prediction and optimized regulation of carbon content in boiler fly ash.
出处 《热能动力工程》 CAS CSCD 北大核心 2005年第2期158-162,共5页 Journal of Engineering for Thermal Energy and Power
基金 国家重点基础研究发展规划基金资助项目(G1999022204)
关键词 煤粉锅炉 BP神经网络 飞灰含碳量 单参数分析 pulverized coal-fired boiler, BP neural network, carbon content in fly ash, single-parameter analysis
作者简介 赵新木(1977-),男,江苏镇江人,清华人学硕士研究生.
  • 相关文献

参考文献11

  • 1XIAO L S, CHEN J F, ZHENG H C, Effect of bluff-body burner and coal particle size on NOx emission and burnout [ J ]. Journal of the Institute of Energy, 1997, 2:112- 119.
  • 2BITTNER J, GASIOROWSKI S, TOUDU E, et al. STI fly ash separation system: operation history at New England Power's Brayton Point Power Plant[A]. 12th International Symposium on Coal Combustion by Production Management and Use[C]. Palo Alto, California: Electric Power Research Institute, 1997. 62 - 65.
  • 3SPEIGHT J G. Chemistry and technology of coal [ M ]. New York:Decker Inc, 1993.
  • 4汤达祯,Colin Harvey.燃煤电厂飞灰物质成分筛分磁选实验研究[J].中国矿业大学学报,2000,29(5):468-471. 被引量:15
  • 5罗春雷.基于BP网络的锅炉优化燃烧指导系统[J].中国电力,2001,34(10):55-57. 被引量:7
  • 6YIN C, LUO Z, ZHOU J. A neural num-linar programming-based coal blending technology for power plant [J]. Chemical Engineering Research and Design, 2000, 78( 1 ) : 118 - 124.
  • 7REINSCHMIDT K F. Neural Networks: next step for simulation and control [J]. Power Engineering, 1991, 11:41-45.
  • 8KOSKO B. Neural networks and fuzzy system[M]. New Jersey: Prentice-Hall, 1992.
  • 9LIPPMAN R P, An introduction to computing with neural nets [ J].IEEE ASSP Magazine, 1987,4(2):4- 22.
  • 10MAREN A J.Handbook of neural Computing application [M]. San Diego, Califomia:Academic Press, 1990.

二级参考文献5

  • 1国家电力公司热工研究院.锅炉燃烧风粉在线监测系统[M].西安:热工研究院,1999..
  • 2包约翰.自适应模式识别和神经网络[M].北京:科学出版社,1991..
  • 3Colin H,The Proceedings of the 22nd International Technical Conference on Coal Utilizati,1997年,605页
  • 4Xiao L S,J Institute Energy,1999年,72卷,112页
  • 5曾汉才,燃烧与污染,1992年

共引文献43

同被引文献246

引证文献25

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部