摘要
目的 :建立中药材吸水膨胀动力学数学模型及对大黄进行研究 ;方法 :用动力学方法建立中药材吸水膨胀动力学数学模型 ,用余水法测定不同时间大黄药材吸水量 ,并用残数法对数据进行曲线拟合 ,其拟合优度采用方差分析 ,以确定大黄药材的吸水动力学模型 ,再进一步计算各动力学参数。结果 :中药材吸水膨胀遵循多元一级线性乳突模型 ,大黄药材吸水膨胀的动力学模型为三室 ,α =0 .32 4 1min-1 ,β =0 .0 1 85min-1 ,π =5 .6 5 9× 1 0 -3 min-1 ,V∞T =1 .72 6mL·g-1 ,V∞1 =1 .0 0 8mL·g-1 ,V∞2 =0 .2 81 4mL·g-1 ,V∞3 =0 .4 36 6mL·g-1 ,K =0 .2 1 86min-1 ,K1 2 =0 .0 2 4 2 6min-1 ,K2 1 =0 .0 74 2 2min-1 ,K1 3 =6 .4 0 2× 1 0 -3 min-1 ,K3 1 =0 .0 2 4 81min-1 。结论 :中药材吸水膨胀服从一级线性动力学量变 ,可用线性乳突模型表达。
AIM: To establish a new kinetic model of hydrating swelling and to make experiments of Radix et Rhizoma Rhei (Rhubarb) designed to validate this model. METHODS: The model was set up according to kinetics, residul water analysis was adopted to measure Rhubarb's sakage, and then obtained the fittin curve and kinetic parameters, its goodness of fit was evaluated by analysis of variance. RESULTS: Hydrating swelling model of the vegetable herb had a form of multivariate first order linear differential equation. Rhubarb comformed to three compartment model with α = 0.3241min -1 , β = 0.0185min -1 , π=5.659×10 -3 min -1 , V ∞ T =1.726mL·g -1 , V ∞ 1 =1.008mL·g -1 , V ∞ 2 =0.2814mL·g -1 V ∞ 3 =0.4366mL·g -1 ,K= 0.2186min -1 ,K 12 =0.02426min -1 ,K 21 =0.07422min -1 ,K 13 =6.402×10 -3 min -3 ,K 31 =0.02481min -1 . CONCLUSION: The kinetic model of hydrating swelling has been in accordance with quantitative changes with multivariate first order linear mammary.
出处
《中成药》
CAS
CSCD
北大核心
2004年第10期788-791,共4页
Chinese Traditional Patent Medicine
基金
本项目获国家自然科学基金 (3 0 17113 2 )
国家中医药管理局中医药科研基金 (0 2 0 3ZP41)资助。
关键词
吸水动力学
大黄
数学模型
植物性药材
absorbed kinetics
Radix et Rhizoma Rhei
mathematical model
vegetable herb
作者简介
贺福元(1965~),男,湖南祁东县人,副教授,博士生,主要从事中药药剂提取工艺、生物药剂学及中医药信息数学分析,电话:0731-5381372,E-mail:pharmsharking@tom.com.