期刊文献+

基于支持向量机的人脸分类 被引量:16

Face Classification Based on SVM
在线阅读 下载PDF
导出
摘要 提出了一种基于支持向量机的人脸分类方法,首先对人脸图像作二维离散余弦变换,取离散余弦变换系数作为特征,然后用支持向量机进行分类。用Essex人脸图像数据库进行性别分类,取得了很好的分类效果。 A method for face classification based on support vector machine(SVM) has been proposed in this paper. Discrete cosine transform (DCT) is used to the face image, resulting in its DCT coefficients as feature. The feature is fed to SVM for classification. The Essex face image database is selected to evaluate the method of sex classification. The results show that the method gives higher accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第11期110-112,共3页 Computer Engineering
关键词 人脸识别 支持向量机 离散余弦变换 Face recognition Support vector machine(SVM) Discrete cosine transform
  • 相关文献

参考文献12

  • 1[1]Osuna E, Freund R, Girosi F. Training Support Vector Machines:An Application to Face Detection[C]. In :Proceeding of CVPR-97,Puerto Rico,1997
  • 2[2]Lee T S. Image Representation Using 2D Gabor Wavelets[J]. IEEE Trans., PAMI,1996,18(10):959-971
  • 3[3]Vapnik V N. The Nature of Statistical Learning Theory[M]. Springer, 1995
  • 4[4]Lyons M J. Automatic Classification of Single Facial Images[J]. IEEE Trans., PAMI,1999,21(12):1357-1362
  • 5[5]Platt J. Sequential Minimal Optimization: A Fastalgorithm for Training Support Vector Machines. Advances in Kernel Methods-support Vector Learning, Cambridge, MA: MIT Press,1999: 185-208
  • 6[6]Keerthi S S, Shevade S K, Bhattacharyya C, et al. A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design [R]. Technical Report TR-ISL-99-03 Intelligent Systems Lab Dept of Computer Science and Automation Indian Institute of Science Bangalore, India,1999
  • 7崔伟东,周志华,李星.支持向量机研究[J].计算机工程与应用,2001,37(1):58-61. 被引量:88
  • 8[8]Vapnik V N. Statistical Learning Theory [M]. Wiely, New York, 1998
  • 9[9]Courant R, Hilbert D. Methods of Mathematical Physics [M]. Wildy- interscience, New York, 1953
  • 10[10]Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machines. In:Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, New York: IEEE,1997:276

二级参考文献24

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184

共引文献103

同被引文献137

引证文献16

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部