期刊文献+

人脸识别技术的研究 被引量:17

Research on Several Key Problems in Face Recognition
在线阅读 下载PDF
导出
摘要 对人脸识别的几个关键技术进行了深入研究 ,提出了一种快速的基于眼睛像素特征的人脸检测方法 :一种有效的基于SVD分解的特征提取方法和一种基于特征差别的SVM人脸识别方法 改进的基于SVD分解的特征提取方法能在一定程度上削弱光照和表情的影响 ,从而更好地抽取人脸的差别特征 基于特征差别的SVM方法将人脸识别这一典型的多分类问题构造成适合SVM处理的二分类问题 ,克服了传统SVM方法在解决多分类问题上的缺陷 实验表明该人脸检测方法有较高的正确检测率 ,提出的特征提取方法能有效地减弱光照和表情对人脸特征的负面影响 ,使得识别率有较大提高 。 Some key problems in face recognition are studied in this paper. A new method of face detection,a new SVD-based method of feature extraction and a new method of face recognition based on SVM are proposed. The improved method of feature extraction based on SVD can extract face features better than the traditional PCA. Only one SVM is built to solve face recognition,which is a typical problem of multi-classification,thus overcoming some flaws of several traditional multi-classification methods of SVM. The experiments are done on the FERET,BioID and the face databases with manual as well as automatic face detection means. The results show that this new detection method presents high correct rate. The new feature extraction method based on SVD weakens the influence of illumination and expression on recognition in order that the higher rate of correct recognition is obtained. The new face recognition method based on SVM has better capability of generalization and higher rate of correct recognition than other SVM methods. These new methods provide academic and experimental warrant for building an automatic face detection and recognition system based on SVM.
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第7期1074-1080,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目 ( 60 2 73 0 3 3 ) 江苏省"十五"科技攻关项目 (BE 2 0 0 10 2 8)
关键词 人脸检测 特征提取 支持向量机 人脸识别 face detection feature extraction support vector machines face recognition
  • 相关文献

参考文献18

  • 1B Moghaddam,A Pentland.Probabilistic visual learning for object representation.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):696~710
  • 2H-A Rowley,S Baluja,T Kanade.Neural network-based face detection.IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(1):23~38
  • 3A Yullie,P Hallinan,D Cohen.Feature exaction from faces using deformable templates.International Journal of Computer Vision,1992,8(2):99~111
  • 4M Turk,A Pentland.Eigenfaces for recognition.Journal of Cognitive Neuroscience,1991,3(1):71~86
  • 5D L Swets,J Weng.Discriminant analysis and eigenspace partition tree for face and object recognition from views.In:Proc of the 2nd Int'l Conf on Automatic Face and Gesture Recognition.Washington:IEEE Computer Society Press,1996.192~197
  • 6R Brunelli,T Poggio.HyperBF networks for gender classification.In:Proc of the DARPA Image Understanding Workshop.San Mateo:Morgan Kaufmann,1992.311~314
  • 7J Buhmann,M Lades,C Malsburg.Size and distortion invariant object recognition by hierarchical graph matching.In:Proc of the Int'l Joint Conf on Neural Networks.San Diego:IEEE Press,1990.411~416
  • 8V N Vapnik.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 9田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17-22. 被引量:53
  • 10刘学军,陈松灿,彭宏京.基于支持向量机的计算机键盘用户身份验真[J].计算机研究与发展,2002,39(9):1082-1086. 被引量:26

二级参考文献2

共引文献70

同被引文献142

引证文献17

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部