摘要
                
                    研究K-复数矩阵的基本运算及与其它矩阵的基本运算之间的关系.同时,通过K-复数的定义与引理进行相关定理的证明,并应用到实例运算中.说明K-复数的矩阵表示不仅让复数的表示方法多样化,而且还把K-复数的矩阵表示灵活应用于解决数学问题上.
                
                In this paper,the relationship between the basic operations of K-complex matrix and the basic operations of other matrices is studied.At the same time,the definition of K-complex number and the lemma are used to prove the relevant theorem,and applied to the example operation.It is showed that the matrix representation of K-complex numbers not only diversifies the representation methods of complex numbers,but also flexibly applies the matrix representation of K-complex numbers to solve mathematical problems.
    
    
                作者
                    蔺琳
                    杨鑫
                Lin Lin;Yang Xin(Dalian University of Finance and Economic)
     
    
    
                出处
                
                    《哈尔滨师范大学自然科学学报》
                        
                                CAS
                        
                    
                        2020年第5期1-6,共6页
                    
                
                    Natural Science Journal of Harbin Normal University
     
            
                基金
                    辽宁省教育科学“十三五”规划2018年度课题立项“基于创新型人才培养视域下通识教育实践课堂建设的研究与探索”(JG18DB021)
            
    
                关键词
                    K-复数
                    矩阵
                    性质
                    关系
                
                        K-complex number
                        Matrix
                        Nature
                        Relationship