期刊文献+

关于子群均素数阶的群为超可解群的一个判定结论 被引量:1

A decision conclusion about group which subgroup all be prime order be Supersolvable group
在线阅读 下载PDF
导出
摘要 有限群理论在自然科学中有着极其重要的应用,有限群中超可解群的性质极其重要,通过定义了主因子,p-主因子及群的中心化子等概念,对这些概念进行深入的研究,得到一系列引理,最后利用这些引理证明了在群G是奇数阶的情况下,如果G中凡素数阶的子群都是正规的,则G是超可解群这一重要的判定结论。 Theory of finite group has a very important application in natural science,it is extremely important that the properties of the supersolvable group.This paper first defines the main factor,p-main factors and the group of centralizer and other concepts.And then research in-depth to these concepts,and get a series of lemma.The use of the lemmas is proved under the condition of the group G is an odd number of order,if every prime order subgroup of G is normal,then G is supersolvable group.Obviously,this is an important decision conclusion.
作者 曾利江 ZENG Li-jiang(Northern Guizhou Istitute of Culture and Economy,Zunyi Normal College,Zunyi 563002,Guizhou,China)
出处 《贵阳学院学报(自然科学版)》 2020年第4期1-5,共5页 Journal of Guiyang University:Natural Sciences
关键词 有限群 超可解群 p-主因子 中心化子 正规子群 finite group supersolvable group p-main factors centralizer normal subgroup
作者简介 曾利江(1962-),男,贵州赤水人,教授。主要研究方向:代数学及其应用。
  • 相关文献

参考文献5

二级参考文献21

  • 1黄建红,郭文彬.有限群的s-条件置换子群[J].数学年刊(A辑),2007,28(1):17-26. 被引量:16
  • 2曾利江.关于幂零群一个定理的推广[J].山东大学学报(理学版),2007,42(4):91-94. 被引量:9
  • 3徐明曜.有限群导引[M].北京:科学出版社,2007.
  • 4Robinson D J S. A course in the theory of groups (Second Edition) [M]. New York:Springer-Verlag, 1996.
  • 5Burnside W. Theory of groups of finite order (Second Edition) [M]. New York: DoverPublications Inc, 1955.
  • 6Neumann B H. Group with automorphisms that leave only the neutral element fixed[J]. Arch Math, 1956,7:1-5.
  • 7Thompson J. Finite groups with fixed-point-free automorphisms of prime order [J]. ProcNat Acad Sci, 1959, 45:578-581.
  • 8Higman G. Groups and rings having automorphisms without non-trivial fixed elements[J]. J London Math Soc, 1957,64:321-334.
  • 9Robinson D J S. Finiteness conditions and generalized soluble groups [M]. BerlinSpringer-Verlag, 1972.
  • 10Kargapolov M I. Merzljakov J I. Fundamentals of the theory of groups [M]. New YorkSpringer-Verlag, 1979.

共引文献9

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部