期刊文献+

细菌-噬菌体对抗性共进化研究进展 被引量:7

Advances in Bacteria-Phage Antagonistic Coevolution
原文传递
导出
摘要 共进化现象在自然界中普遍存在。细菌和细菌的天敌噬菌体之间的对抗是一场持久战,细菌-噬菌体系统是研究共进化的模式材料。目前关于细菌-噬菌体对抗性共进化的机制有两种公认的模型,即GFG模型和MA模型,对应于两种模式,即ARD模式和FSD模式;主要采用TimeShift Assays方法测定细菌-噬菌体的对抗性共进化动力学模式。长尾噬菌体是有尾噬菌体中最大的家族。目前关于细菌-噬菌体系统共进化的研究主要集中在短尾和肌尾噬菌体与其宿主之间,而细菌-长尾噬菌体共进化的研究报道较少。 Coevolution is ubiquitous in nature.The natural enemies of bacteria and bacteria are a constant battle.Bacteria-phage system is a model material for studying coevolution.Bacteriophages,currently,there are two recognized models for the mechanism of bacteria-phage antagonistic coevolution:GFG model and MA model;corresponding to two models:ARD model and FSD model.The antagonistic coevolutionary kinetic model of bacteriophage was determined by time-shift assays.Long-tailed phages are the largest family of tailed phages.At present,the studies on bacteria-phage system coevolution mainly focus on the short tail and myotail phage and their hosts,while the bacteria-long tail phage coevolution has not been reported.
作者 崔自红 季秀玲 CUI Zi-hong;JI Xiu-ling(Faculty of Life Science and Technology,Kunming University of Science and Technology,Kunming 650500,China)
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2020年第1期140-145,共6页 China Biotechnology
基金 国家自然科学基金(31860147)资助项目.
关键词 对抗性共进化 攻防机制 共进化动力学 Antagonistic coevolution Defense mechanism Coevolutionary dynamics
作者简介 通讯作者:季秀玲,电子信箱:jixiuling1023@126.com
  • 相关文献

参考文献2

二级参考文献44

  • 1Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909): 1843-1845.
  • 2Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet, 2010, 11(3): 181-190.
  • 3Mojica FJM, D I ez-Villasefior C, Garc ~ a-Mart f nez J, A1- mendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(Pt 3): 733-740.
  • 4Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs guide antiviral defense in orokarvotes. Science, 2008, 321(5891): 960-964.
  • 5Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 2009, 139(5): 945-956.
  • 6Marraffini LA, Sontheimer EJ. Self versus non-self discrimi- nation during CRISPR RNA-directed immunity. Nature, 463(7280): 568-571.
  • 7Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962): 167-170.
  • 8Heidelberg JF, Nelson WC, Schoenfeld T, Bhaya D. Germ warfare in a microbial mat community: CRISPRs provide in- sights into the co-evolution of host and viral genomes. PLoS One, 2009, 4(1): e4169.
  • 9Wilmes P, Simmons SL, Denef VJ, Banfield JF. The dynamic genetic repertoire of microbial communities. FEMS Microbiol Rev, 2009, 33(1): 109-132.
  • 10Greve B, Jensen S, Br ia gger K, Zillig W, Garrett RA. Ge- nomic comparison of archaeal conjugative plasmids from Sulfolobus. Archaea, 2004, 1 (4): 231-239.

共引文献39

同被引文献64

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部