期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于RCMFFDE和SSA-RVM的旋转机械损伤检测模型 被引量:1
1
作者 王显彬 孙阳 《机电工程》 北大核心 2025年第3期510-519,共10页
针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机... 针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机械损伤检测模型。首先,进行了基于RCMFFDE方法的特征提取,生成了特征样本,以定量反映旋转机械的不同损伤情况;然后,采用t-SNE方法,将原始高维故障特征映射至低维空间,获得了对故障更敏感的低维特征;最后,将敏感的低维故障特征向量输入至SSA-RVM多分类器中,进行了训练和测试,实现了旋转机械样本的故障识别目的;采用两种旋转机械数据集进行了实验,并从准确率、效率和抗噪性方面,将RCMFFDE-SSA-SVM方法与多种特征提取方法进行了对比。研究结果表明:RCMFFDE能用于有效提取旋转机械的故障特征,分别取得99.2%和100%的识别精度;而对敏感特征进行分类所获得的精度优于对原始特征进行分类的情形,前者比后者提高了4%;在模式识别中,SSA-RVM优于其他分类器;自制数据集的诊断精度达到了97%,特征提取的时间为16.05 s。 展开更多
关键词 非线性振动信号 特征提取时间 故障识别精度(诊断精度) 精细复合多尺度分数波动散布熵 t-分布随机邻域嵌入 麻雀搜索算法优化相关向量机
在线阅读 下载PDF
基于多源信息融合的柴油机典型故障诊断方法 被引量:1
2
作者 李宝月 余永华 +4 位作者 曹炳鑫 叶剑平 马炳杰 尧阳烽 赵国旭 《内燃机工程》 北大核心 2025年第1期73-79,90,共8页
针对基于单一振动信号难以区分柴油机不同部件故障,提出一种基于t分布–随机邻近嵌入(t-distributed stochastic neighbor embedding,t-SNE)多源信息融合的故障诊断方法。首先,通过试验对柴油机故障仿真模型进行标定,基于仿真模型获取... 针对基于单一振动信号难以区分柴油机不同部件故障,提出一种基于t分布–随机邻近嵌入(t-distributed stochastic neighbor embedding,t-SNE)多源信息融合的故障诊断方法。首先,通过试验对柴油机故障仿真模型进行标定,基于仿真模型获取不同故障状态下的热工参数与缸盖振动,选取相关性低的热工参数,提取振动信号的时域和频域特征参数,并利用t-SNE将振动特征参数与热工参数进行融合降维,基于支持向量机(support vector machine,SVM)方法对降维后的数据进行分类识别,构建柴油机故障诊断模型,最终取得了95.7%的故障识别准确率。与基于振动单一信号的故障诊断方法相比,多源信息融合能有效区分不同故障类别,提高柴油机故障识别准确率。 展开更多
关键词 柴油机 多源信息融合 t分布–随机邻近嵌入 故障诊断
在线阅读 下载PDF
基于特征融合的往复式压缩机气阀故障诊断
3
作者 王康 宋朝琪 +4 位作者 聂方 袁宗泽 任护国 尧阳烽 余永华 《机床与液压》 北大核心 2025年第1期151-156,共6页
针对仅依靠单一信号难以准确诊断气阀故障且缺乏多参数综合利用的气阀故障诊断方法的问题,提出一种基于t-分布随机近邻嵌入(t-SNE)特征降维融合的往复式压缩机气阀故障诊断方法。以某型四级高压往复式压缩机为研究对象,通过故障模拟试... 针对仅依靠单一信号难以准确诊断气阀故障且缺乏多参数综合利用的气阀故障诊断方法的问题,提出一种基于t-分布随机近邻嵌入(t-SNE)特征降维融合的往复式压缩机气阀故障诊断方法。以某型四级高压往复式压缩机为研究对象,通过故障模拟试验获取进、排气阀不同典型故障下的热力参数和声发射信号,利用t-SNE降维算法将不同信号源提取的高维特征参数融合降维,并基于K-近邻算法(KNN)构建气阀故障诊断模型。结果表明:与其他降维算法相比,经t-SNE降维后,同类样本的类内距离小,不同类型故障样本类间距离较大,可以有效区分进排气阀的各类故障;多信号特征融合降维后,基于KNN分类算法构建的气阀故障诊断模型能有效识别气阀故障,其准确率为100%。 展开更多
关键词 气阀 故障诊断 t-分布随机近邻嵌入 特征融合 K-近邻算法
在线阅读 下载PDF
基于多维时频特征的新型配电系统单相接地故障定位方法
4
作者 鲁晓天 唐金锐 +3 位作者 尹昕 黄云辉 周克亮 袁成清 《高电压技术》 北大核心 2025年第2期903-914,I0038-I0042,共17页
新型配电系统柔性消弧装置及定位技术均需充分挖掘相电流暂态特征来实现选相、选线和故障定位。针对此问题,对新型配电系统单相接地故障相电流暂态分布特性进行分析,提出了一种基于相电流多维时频分布特征差异的新型配电系统单相接地故... 新型配电系统柔性消弧装置及定位技术均需充分挖掘相电流暂态特征来实现选相、选线和故障定位。针对此问题,对新型配电系统单相接地故障相电流暂态分布特性进行分析,提出了一种基于相电流多维时频分布特征差异的新型配电系统单相接地故障定位新方法。依据故障相电流故障暂态量与非故障相电流故障暂态量的差异性,通过灰色关联度算法完成故障选相;对各出线始端监测点以及疑似故障馈线分支监测点的相电流暂态波形进行26维多维时频特征的提取,通过经方差优化的t-分布近邻嵌入算法(variance-optimized t-distributed stochastic neighbor embedding,VTSNE)进行筛选和降维,并对处理后的特征数据进行基于密度的有噪空间聚类算法(density-based special clustering of application with noise,DBSCAN)聚类完成故障选线和故障区段定位。该方法在某绿色港口10 kV新型配电系统模型中得到验证,在不同故障初相角、不同过渡电阻等故障场景下均可准确可靠定位故障位置,对采样同步精度及采样频率要求低,易于工程实现。 展开更多
关键词 新型配电系统 故障定位 多维时频特征 t-SNE降维 DBSCAN聚类
在线阅读 下载PDF
基于1DCNN和PLSDA酸枣仁真伪高光谱图像鉴别中的关键特征分析
5
作者 赵昕 石玉娜 +5 位作者 刘怡彤 姜洪喆 褚璇 赵志磊 王宝军 陈晗 《光谱学与光谱分析》 北大核心 2025年第3期869-877,共9页
酸枣仁因其养心益肝的功效,是安神助眠类保健品和中药制剂的重要原料。目前市售酸枣仁掺假现象严重,极大损害了消费者利益,扰乱了市场秩序。传统人工检测或基于实验室的高效液相色谱方法存在效率低,推广难的问题。本研究基于卷积神经网... 酸枣仁因其养心益肝的功效,是安神助眠类保健品和中药制剂的重要原料。目前市售酸枣仁掺假现象严重,极大损害了消费者利益,扰乱了市场秩序。传统人工检测或基于实验室的高效液相色谱方法存在效率低,推广难的问题。本研究基于卷积神经网络和偏最小二乘判别提出了一种高光谱成像酸枣仁真伪鉴别方法,并对两类模型中的关键光谱特征进行了讨论研究,为后续多光谱系统和便携式仪器开发提供借鉴。提取酸枣仁及其常见伪品(理枣仁、兵豆和枳椇子)高光谱图像(400~1000 nm)中所有单籽粒的平均光谱。基于平均光谱分别建立偏最小二乘判别分析(PLSDA)模型和一维卷积神经网络(1DCNN)模型。PLSDA建模前采用竞争性自适应重加权算法(CARS)挑选特征波长。在1DCNN模型中添加了自定义波长选择层,并对卷积层和全连接层输出结果应用t分布随机邻域嵌入(t-SNE)进行可视化分析。为了与CARS-PLSDA模型进行有效对比,构建了基于五个波长的5W-1DCNN模型。结果表明CARS-PLSDA和1DCNN模型都能获得理想的预测效果,校正集和预测集分类正确率均在99%以上。对比CARS与自定义层挑选的特征波长,670、721和850 nm附近的波长在两种模型中均具有重要作用。研究结果为酸枣仁真伪快速鉴别的多光谱和便携式检测设备提供参考。 展开更多
关键词 高光谱成像 一维卷积神经网络 t分布随机邻域嵌入 偏最小二乘法判别分析
在线阅读 下载PDF
基于端口宽频阻抗谱的电能表智能无损检测
6
作者 黄奕俊 赵烨 +2 位作者 江小昆 周晓东 胡珊珊 《广东电力》 北大核心 2025年第7期68-75,共8页
随着配电网数字化转型发展,智能电表大规模应用,拆回电表的状态判别和二次利用具有重要意义。电能表故障类型具有多面性、复杂性,当前主要的基于人工经验的开盖检测手段,故障判别耗时长、效率低。针对此,提出一种电能表端口阻抗分析的... 随着配电网数字化转型发展,智能电表大规模应用,拆回电表的状态判别和二次利用具有重要意义。电能表故障类型具有多面性、复杂性,当前主要的基于人工经验的开盖检测手段,故障判别耗时长、效率低。针对此,提出一种电能表端口阻抗分析的无损检测方法,利用阻抗特征表征故障类型,实现电能表的快速无损自动化检测。首先,在电能表端子注入激励源,测量端口在宽频范围内的阻抗特性。其次,基于t分布随机邻域嵌入(t-distributed stochastic neighbor embedding, t-SNE)算法建立端口阻抗与故障类型映射的故障特征矩阵。最后利用概率神经网络(probabilistic neural network, PNN)进行人工智能训练,实现针对主要类型故障元件的故障准确判别。该方法可实现对电能表的不开盖无损检测,具有较高的故障判别准确性。通过实例验证,所提方法相较于传统人工检测方法,检测效率和检测准确度大幅提升,为电能表的状态判别和二次利用提供了全新的技术手段。 展开更多
关键词 电能表 故障检测 智能无损检测 宽频阻抗谱 概率神经网络 t-SNE算法
在线阅读 下载PDF
基于AVMD和排列熵的t分布邻域嵌入流形HHO-SVM模拟电路故障诊断方法 被引量:4
7
作者 陈晓梅 王行健 +1 位作者 蔡烨 周博 《电子测量与仪器学报》 CSCD 北大核心 2024年第6期233-240,共8页
随着信息大数据时代的到来,对于电子系统的依赖程度越来越高,因此模拟电路的故障诊断的准确度要求与日俱增。而模拟电路故障诊断困难,是电子系统诊断维修的瓶颈。本文提出基于自适应变分模态分解(AVMD)和排列熵(PE)的t分布邻域嵌入流形... 随着信息大数据时代的到来,对于电子系统的依赖程度越来越高,因此模拟电路的故障诊断的准确度要求与日俱增。而模拟电路故障诊断困难,是电子系统诊断维修的瓶颈。本文提出基于自适应变分模态分解(AVMD)和排列熵(PE)的t分布邻域嵌入流形哈里斯鹰优化支持向量机(HHO-SVM)模拟电路故障诊断方法。首先,利用AVMD对待测电路的观测信号进行自适应变分模态分解,得到多组IMF信号,不仅可以克服噪声干扰,而且可以来自适应地确定分解模式的数量,进一步提升分解精度;再对IMF计算排列熵,以充分体现IMF不同时段局部特征,二者相结合构建故障特征向量。并在此基础上,采用t分布式随机邻域嵌入(t-SNE)实现特征空间的流形学习和降维,构建具有良好区分度且保留原来的局部结构特征的故障特征向量;最后依靠哈里斯鹰优化支持向量机(HHO-SVM),使其具有良好的分类准确度,从而最终完成电路故障诊断。通过仿真验证,结果显示,本文方法故障诊断正确率可达100%,效果良好。 展开更多
关键词 自适应变分模态分解AVMD t分布邻域嵌入 故障诊断 哈里斯鹰优化支持向量机
在线阅读 下载PDF
融合CNN和ViT的声信号轴承故障诊断方法 被引量:10
8
作者 宁方立 王珂 郝明阳 《振动与冲击》 EI CSCD 北大核心 2024年第3期158-163,170,共7页
针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像... 针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像作为卷积神经网络的输入,用于隐式提取图像的深层特征,其输出作为视觉转换器的输入。视觉转换器用于提取信号的时间序列信息。并在输出层利用Softmax函数实现故障模式的识别。试验结果表明,该方法对于轴承故障诊断准确率较高。为了更好解释和优化提出的轴承故障诊断方法,利用t-分布领域嵌入算法对分类特征进行了可视化展示。 展开更多
关键词 短时傅里叶变换 卷积神经网络 视觉转换器 t-分布领域嵌入算法
在线阅读 下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法 被引量:4
9
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
在线阅读 下载PDF
基于t⁃SNE降维方法的滚动轴承剩余寿命预测 被引量:3
10
作者 钟建华 黄聪 +1 位作者 钟舜聪 肖顺根 《机械强度》 CAS CSCD 北大核心 2024年第4期969-976,共8页
由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法。首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(... 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法。首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont Singular Value Decomposition,EEMD+SVD)得到数十维特征,加上剩余寿命预测常用的诸如峭度、均值等有效特征,利用决策树筛选出15维特征;将所筛选特征进行双指数拟合并通过t分布随机近邻嵌入(t⁃distributed Stochastic Neighbor Embedding,t⁃SNE)将退化信号降维成线性趋势。线性退化趋势在预测上相比于指数趋势有更好的泛化性,同时预测准确度相比于指数模型支持向量回归(Support Vector Regression,SVR)和深度信念网络(Deep Belief Network,DBN)都有较高的提升。 展开更多
关键词 特征提取 轴承 剩余寿命预测 双指数模型 t⁃SNE
在线阅读 下载PDF
温变下基于奇异谱分析的机电阻抗损伤识别法 被引量:2
11
作者 陈文捷 肖黎 屈文忠 《振动.测试与诊断》 EI CSCD 北大核心 2024年第1期113-120,201,共9页
为消除温度变化对损伤识别的影响,采用奇异谱分析(singular spectrum analysis,简称SSA)方法处理阻抗信号以分离不受温度变化影响的信号分量,提出结合t-分布随机邻域嵌入(t-distribution stochastic neighbor embedding,简称t-SNE)与K... 为消除温度变化对损伤识别的影响,采用奇异谱分析(singular spectrum analysis,简称SSA)方法处理阻抗信号以分离不受温度变化影响的信号分量,提出结合t-分布随机邻域嵌入(t-distribution stochastic neighbor embedding,简称t-SNE)与K均值聚类算法的无监督机器学习方法,进一步处理信号分量实现损伤识别。为验证该方法的可行性,以螺栓组连接的铝板结构作为实验对象进行温度变化工况下螺栓松动机电阻抗损伤识别实验。结果表明,应用SSA方法得到的信号分量能在温度变化影响下有效识别螺栓松动状态,各工况识别准确率均达到98%以上,证明了所提出方法对消除温度变化影响的有效性。 展开更多
关键词 损伤检测 机电阻抗 温度变化 奇异谱分析 t-分布随机邻域嵌入
在线阅读 下载PDF
基于t-SNE的多参数岩体结构面分步聚类方法 被引量:5
12
作者 李新正 王述红 +1 位作者 侯钦宽 董福瑞 《岩土力学》 EI CAS CSCD 北大核心 2024年第5期1540-1550,共11页
结构面聚类是进行岩体稳定性评价的重要步骤。常用聚类方法多以产状作为分组依据,忽略了结构面物理特性指标对岩体稳定性的影响。针对分组依据单一化的不足,综合考虑结构面倾向、倾角、迹长、张开度、填充状态和粗糙度的影响,提出一种... 结构面聚类是进行岩体稳定性评价的重要步骤。常用聚类方法多以产状作为分组依据,忽略了结构面物理特性指标对岩体稳定性的影响。针对分组依据单一化的不足,综合考虑结构面倾向、倾角、迹长、张开度、填充状态和粗糙度的影响,提出一种基于学生分布随机邻近嵌入(student-distributed stochastic neighbor embedding,简称t-SNE)的多参数岩体结构面分步聚类方法。首先,利用t-SNE算法对除产状外的结构面特征进行数据降维;进而利用模拟退火算法搜索K-means算法的全局最优初始值,并采用分步聚类思想完成聚类。研究表明:所提方法有效地解决了高维空间样本稀疏的问题,同时保留了数据的局部结构与全局结构。新方法相比于传统方法能对空间分布相似区内结构面的物理特性进行精确划分,分组精度更高,且在避免复杂权重值计算的条件下,能有效区分产状与物理特性参数对岩体稳定性的影响差异。最后,将所提方法应用于中国新疆某露天矿坡结构面实测数据分析中,所得分组结果合理可靠,进一步证明该方法在实际工程中的有效性。研究方法可为多参数岩体结构面的分步聚类提供参考。 展开更多
关键词 岩体结构面 多参数 分步聚类 t-SNE K-MEANS算法
在线阅读 下载PDF
一种基于t-分布随机近邻嵌入的文本聚类方法 被引量:6
13
作者 徐秀芳 徐森 +3 位作者 花小朋 徐静 皋军 安晶 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期264-271,共8页
文本数据具有高维、稀疏、海量的特性,给传统的聚类算法带来了极大挑战.提出一种基于t-分布随机近邻嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)的文本聚类方法.首先通过t-SNE将高维文本数据嵌入到低维空间,使得高维空间... 文本数据具有高维、稀疏、海量的特性,给传统的聚类算法带来了极大挑战.提出一种基于t-分布随机近邻嵌入(t-Distributed Stochastic Neighbor Embedding,t-SNE)的文本聚类方法.首先通过t-SNE将高维文本数据嵌入到低维空间,使得高维空间相似度较低的文本对应的映射点距离较远,而相似度较高的文本对应的映射点距离较近;然后根据低维空间映射点坐标,再采用传统的聚类分析算法进行聚类,得到最终的聚类结果.在多个基准文本数据集上进行了实验测试,验证了该方法的有效性. 展开更多
关键词 聚类分析 文本聚类 维数约简 随机近邻嵌入 聚类算法
在线阅读 下载PDF
判别随机近邻嵌入分析方法 被引量:4
14
作者 郑建炜 邱虹 +1 位作者 蒋一波 王万良 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第11期1477-1484,共8页
针对随机近邻嵌入算法的非线性本质和无监督学习特征,提出一种线性有监督的特征提取方法,称为判别随机近邻嵌入分析.该方法通过输入样本的类别信息构建数据分布的联合概率表达式,用于反映同类和异类数据间的相似度;同时引入线性投影矩... 针对随机近邻嵌入算法的非线性本质和无监督学习特征,提出一种线性有监督的特征提取方法,称为判别随机近邻嵌入分析.该方法通过输入样本的类别信息构建数据分布的联合概率表达式,用于反映同类和异类数据间的相似度;同时引入线性投影矩阵生成子空间数据,并在类内KL散度最小和类间KL散度最大的准则下建立目标泛函.通过人工合成数据和经典人脸库对文中方法的性能进行验证,结果表明,该方法不仅具有较好的可视化能力,而且能够有效地对不同类别的数据进行降维分簇,提升后续模式分类器的鉴别效果. 展开更多
关键词 流形嵌入 有监督学习 数据可视化 随机近邻嵌入
在线阅读 下载PDF
核判别随机近邻嵌入分析方法 被引量:5
15
作者 王万良 邱虹 +1 位作者 黄琼芳 郑建炜 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第4期623-631,共9页
为了有效地解决非线性特征提取中存在的鉴别效率和样本外问题,最大限度地保持观测信息,并进一步提高相关方法的降维性能,将核学习的方法应用到判别随机近邻嵌入分析方法中,提出一种核判别随机近邻嵌入分析方法.通过引入核函数,将原空间... 为了有效地解决非线性特征提取中存在的鉴别效率和样本外问题,最大限度地保持观测信息,并进一步提高相关方法的降维性能,将核学习的方法应用到判别随机近邻嵌入分析方法中,提出一种核判别随机近邻嵌入分析方法.通过引入核函数,将原空间中的样本映射到高维核空间中,构建了用于反映同类和异类数据间相似度的联合概率表达式;在此基础上,引入线性投影矩阵生成对应子空间数据;最后在类内Kullback-Leiber(KL)散度最小和类间KL散度最大的准则下建立目标泛函.该方法突出了异类样本间的特征差异,使样本变得线性可分,从而提高了分类性能.在COIL-20图像库和ORL,Yale经典人脸库上进行实验,验证了文中方法的分类鉴别能力. 展开更多
关键词 判别随机近邻嵌入 基于核函数的方法 数据可视化 非线性特征提取
在线阅读 下载PDF
基于纯电动汽车高频数据的驾驶风格分类方法 被引量:6
16
作者 纪少波 张珂 +4 位作者 李伦 苏士斌 何绍清 冯远宏 张强 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第2期273-282,共10页
基于纯电动汽车的高频运行数据选取了15项与驾驶安全有关的特征参数;通过对各特征参数的统计分析,提出了多参数组合阈值边界线进行危险驾驶行为识别,然后对比分析了两种聚类算法和4种降维方法的效果,采用t分布随机邻域嵌入(t‑SNE)和高... 基于纯电动汽车的高频运行数据选取了15项与驾驶安全有关的特征参数;通过对各特征参数的统计分析,提出了多参数组合阈值边界线进行危险驾驶行为识别,然后对比分析了两种聚类算法和4种降维方法的效果,采用t分布随机邻域嵌入(t‑SNE)和高斯混合模型(GMM)组合算法建立了驾驶风格分类模型,将驾驶风格分为3种类型。在此基础上,研究了不同驾驶风格对应的车辆运行特性。该分类模型能够有效反映驾驶员的驾驶习惯,为车队管理和道路安全提供可靠的评估依据。 展开更多
关键词 危险驾驶行为 驾驶风格 高斯混合模型 t分布随机邻域嵌入
在线阅读 下载PDF
基于DTCWPT和t-SNE的去噪方法及在故障诊断中的应用 被引量:11
17
作者 梁伟阁 佘博 田福庆 《电子测量与仪器学报》 CSCD 北大核心 2018年第5期74-81,共8页
为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWP... 为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWPT分解的多尺度特性以及t-SNE的非线性降维能力。将振动信号进行双树复小波包分解,依据各尺度小波包系数Shannon熵值搜索最佳小波包基,利用提出的新的阈值函数,对最佳小波包基的小波包系数进行去噪并单支重构组成高维信号空间,然后,采用t-SNE提取高维空间的低维流形,对低维信号序列进一步采用阈值去噪,利用谱回归分析重构回一维信号序列。最后,通过对仿真信号与滚动轴承振动信号进行去噪,结果证实了方法具有良好的非线性去噪性能,将仿真信号的信噪比从-1提高到8.6 d B,并且能更有效的提取强噪声干扰下滚动轴承的故障特征频率。 展开更多
关键词 双树复小波包 t分布随机近邻嵌入 谱回归分析 去噪 故障诊断
在线阅读 下载PDF
基于卷积神经网络的交直流输电系统故障诊断 被引量:41
18
作者 张大海 张晓炜 +1 位作者 孙浩 和敬涵 《电力系统自动化》 EI CSCD 北大核心 2022年第5期132-140,共9页
随着交直流输电系统规模的不断扩大,电网结构和故障特征愈加复杂,现有故障诊断方法面对复杂电网和超大数据量时难以精准提取故障特征,急需适应性强且准确率高的电网故障诊断方法。为此提出一种基于卷积神经网络(CNN)的电网故障诊断方法... 随着交直流输电系统规模的不断扩大,电网结构和故障特征愈加复杂,现有故障诊断方法面对复杂电网和超大数据量时难以精准提取故障特征,急需适应性强且准确率高的电网故障诊断方法。为此提出一种基于卷积神经网络(CNN)的电网故障诊断方法。首先,通过逐层筛选、逐层增叠的网络构造方式逐步测试,其目的是为了构建充分适应于电网故障诊断的网络结构;然后,利用网络层级优化策略调整训练参数,并以交叉熵最小为目标对深层故障特征进行挖掘;最后,在MATLAB/Simulink平台上搭建交直流输电系统模型,结合t分布随机邻域嵌入(t-SNE)可解释性技术展示诊断效果,通过与传统方法对比证明所提方法能够深度挖掘故障特征且具备很高的诊断准确率。 展开更多
关键词 深度学习 卷积神经网络 交直流输电系统 故障诊断 t分布随机邻域嵌入
在线阅读 下载PDF
基于T-SNE样本熵和TCN的滚动轴承状态退化趋势预测 被引量:37
19
作者 于重重 宁亚倩 +1 位作者 秦勇 高柯柯 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第8期39-46,共8页
为了能够尽早发现滚动轴承开始出现显著退化的临界状态,精准预测滚动轴承的状态退化趋势,提出了T-分布随机近邻嵌入(T-SNE)样本熵状态退化特征指标和基于时间卷积网络(TCN)的轴承状态退化趋势预测方法。首先利用T-SNE算法提取原始振动... 为了能够尽早发现滚动轴承开始出现显著退化的临界状态,精准预测滚动轴承的状态退化趋势,提出了T-分布随机近邻嵌入(T-SNE)样本熵状态退化特征指标和基于时间卷积网络(TCN)的轴承状态退化趋势预测方法。首先利用T-SNE算法提取原始振动信号的低维流形特征,再计算低维流形特征的样本熵作为状态退化特征,最后基于历史状态退化特征通过TCN算法预测轴承的状态退化趋势。实验结果表明,相较于传统特征指标,T-SNE样本熵特征指标能够至少提前50 min发现滚动轴承开始出现显著退化的临界状态,且TCN算法的预测误差仅为0. 45%,具有较高的工程应用价值。 展开更多
关键词 T-分布随机近邻嵌入 样本熵 时间卷积网络 滚动轴承 状态退化趋势预测
在线阅读 下载PDF
基于二叉树和随机邻域嵌入的视频指纹算法 被引量:3
20
作者 聂秀山 刘琚 孙建德 《电子学报》 EI CAS CSCD 北大核心 2013年第12期2409-2415,共7页
针对互联网视频认证问题,提出了一种基于二叉树和随机邻域嵌入的视频指纹算法,该算法首先利用二叉树和归一分割理论选取视频代表帧,然后以代表帧亮度的离散余弦变换系数作为视频在高维空间的特征,利用随机邻域嵌入方法把视频高维特征投... 针对互联网视频认证问题,提出了一种基于二叉树和随机邻域嵌入的视频指纹算法,该算法首先利用二叉树和归一分割理论选取视频代表帧,然后以代表帧亮度的离散余弦变换系数作为视频在高维空间的特征,利用随机邻域嵌入方法把视频高维特征投影到三维空间,以视频在三维空间中相邻投影点距离序列的均值和方差构造匹配密钥,以距离序列向量二值量化构造视频指纹;对于视频指纹匹配,首先利用匹配密钥进行初级匹配,缩小匹配范围,然后在候选指纹组内进一步匹配,从而达到视频认证的目的. 展开更多
关键词 视频指纹 视频拷贝检测 随机邻域嵌入 二叉树
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部