期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
基于t分布随机邻域嵌入算法的工业过程故障分类 被引量:4
1
作者 陶飞 苗爱敏 +2 位作者 李鹏 曹敏 李维 《南京理工大学学报》 EI CAS CSCD 北大核心 2020年第3期332-339,共8页
针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)... 针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)分类器相结合建立故障分类模型。利用t-SNE算法对故障数据进行非线性特征提取,获取数据的关键区分特征。用FDA和SVM算法实现故障分类和识别。通过田纳西-伊士曼(TE)过程获得的实验数据进行实验仿真分析,并分别与基于核主元分析法(KPCA)、拉普拉斯特征映射(LE)构建的KPCA-FDA、LE-FDA、KPCA-SVM、LE-SVM 4种故障分类模型进行比较。定量评估结果表明:即使基于不同分类器,相较于其他2种方法,该文方法的分类准确率分别提升了2%和7%,且其平均分类准确率能保持在97%以上。 展开更多
关键词 t分布随机邻域嵌入 工业过程 费舍判别分析 支持向量机 田纳西-伊士曼过程 核主元分析法 拉普拉斯特征映射
在线阅读 下载PDF
基于t分布随机邻域嵌入的阿尔茨海默症诊断模型 被引量:3
2
作者 成超 杨晨晖 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期123-128,共6页
对大脑皮层厚度数据进行建模从而实现阿尔茨海默症的诊断.在训练样本少,数据复杂且非线性的情况下,相比于BP神经网络和k最近邻等算法,支持向量机算法表现出更优良的特性.针对支持向量机算法受数据高维度的影响,将t分布随机邻域嵌入算法... 对大脑皮层厚度数据进行建模从而实现阿尔茨海默症的诊断.在训练样本少,数据复杂且非线性的情况下,相比于BP神经网络和k最近邻等算法,支持向量机算法表现出更优良的特性.针对支持向量机算法受数据高维度的影响,将t分布随机邻域嵌入算法引入到支持向量机模型.t分布随机邻域嵌入算法既能撷取原始高维数据的局部信息,也能揭示全局结构.t分布随机邻域嵌入算法先将这些非线性数据降维到低维空间,支持向量机算法再将这数据映射到新的高维空间,通过寻找最佳分类超平面的方法,使分类效果达到最佳水平.最后将集成学习算法AdaBoost的思想融入模型,可以使模型的分类准确率得到提升,而且变得鲁棒性更强. 展开更多
关键词 支持向量机 t分布随机邻域嵌入 集成学习 阿尔茨海默症
在线阅读 下载PDF
改进T分布随机近邻嵌入改进聚类的机械故障分类方法
3
作者 朱曦海伦 易灿灿 《机械设计与制造》 北大核心 2023年第3期5-10,共6页
轴承、齿轮等零部件作为机械设备的关键组成部分,它们的运行状态直接影响着整个系统的安全。为此,提出了T分布随机近邻嵌入改进的机械故障诊断方法。该方法将机械故障信号历史监测信号作为原始特征库,采用t-SNE降维算法提取机械故障信... 轴承、齿轮等零部件作为机械设备的关键组成部分,它们的运行状态直接影响着整个系统的安全。为此,提出了T分布随机近邻嵌入改进的机械故障诊断方法。该方法将机械故障信号历史监测信号作为原始特征库,采用t-SNE降维算法提取机械故障信号的主特征矩阵,基于改进的聚类算法搜寻每一采样时刻的聚类中心,分别计算在各个采样时刻的偏心距离,得到归一化的累积偏心距离矩阵,从而实现故障的准确预测。结果表明,所提出的方法能够准确地分类不同机械故障模式,有助于保障设备健康平稳运行。 展开更多
关键词 流形学习 聚类算法 t分布随机近邻嵌入 故障诊断
在线阅读 下载PDF
基于费希尔信息度量的随机近邻嵌入算法 被引量:2
4
作者 张亚红 李玉鑑 《北京工业大学学报》 CAS CSCD 北大核心 2016年第6期862-869,共8页
为提高文本分类的准确率,提出了费希尔信息度量随机近邻嵌入算法(Fisher information metric based on stochastic neighbor embedding,FIMSNE).首先,把文本的词频向量看作统计流形上的概率密度样本点,利用费希尔信息度量计算样本点之... 为提高文本分类的准确率,提出了费希尔信息度量随机近邻嵌入算法(Fisher information metric based on stochastic neighbor embedding,FIMSNE).首先,把文本的词频向量看作统计流形上的概率密度样本点,利用费希尔信息度量计算样本点之间的距离;然后,从信息几何的观点出发,对t分布随机近邻嵌入(t-stochastic neighbor embedding,t-SNE)进行改进,实现了新算法.真实文本数据集上的二维嵌入和分类实验的结果表明:FIMSNE的性能在总体上优于t-SNE、费希尔信息非参数嵌入(Fisher information nonparametric embedding,FINE)和主成分分析(principal components analysis,PCA). 展开更多
关键词 文本分类 统计流形 信息几何 费希尔信息度量 t分布随机近邻嵌入
在线阅读 下载PDF
基于改进黏菌算法优化BiLSTM的短期供热负荷控制预测 被引量:4
5
作者 薛贵军 赵广昊 史彩娟 《沈阳工业大学学报》 CAS 北大核心 2024年第4期434-441,共8页
针对短期供热负荷控制预测的问题,提出了一种基于改进黏菌算法优化BiLSTM的预测模型。利用猫映射、T分布变异和随机反向学习等改进策略对黏菌算法进行改进,改进后的黏菌算法优化BiLSTM网络参数,构建ISMA-BiLSTM模型,对换热站热负荷进行... 针对短期供热负荷控制预测的问题,提出了一种基于改进黏菌算法优化BiLSTM的预测模型。利用猫映射、T分布变异和随机反向学习等改进策略对黏菌算法进行改进,改进后的黏菌算法优化BiLSTM网络参数,构建ISMA-BiLSTM模型,对换热站热负荷进行预测。实验结果表明,ISMA-BiLSTM模型与SMA-BiLSTM、BiLSTM和LSTM模型相比,预测结果更加合理且预测精度有所提高,在短期供热负荷预测中能满足实际工程控制需要。 展开更多
关键词 集中供热系统 热负荷 短期供热负荷控制预测 黏菌算法 双向长短期记忆网络 猫映射 t分布变异 随机反向学习
在线阅读 下载PDF
Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用 被引量:56
6
作者 张淑清 段晓宁 +4 位作者 张立国 姜安琦 姚玉永 刘勇 穆勇 《中国电机工程学报》 EI CSCD 北大核心 2021年第9期3120-3129,共10页
电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负... 电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负荷预测的多种气象因素影响,提出一种基于Tsne降维可视化分析及飞蛾火焰优化ELM算法(MFOELM)的电力负荷预测新方法。针对影响电力负荷预测的高维气象数据,采用改进的SNE降维可视化分析方法Tsne,解决了数据拥挤造成可视化效果不佳且数据结构易发生改变的问题,通过与Kpca、SNE降维方法的对比实验,证明了Tsne可以更好地将高维气象数据向低维空间映射,较高地保持高维空间中的数据结构并改善数据可视化效果;针对ELM负荷预测模型的局限,利用MFO在求解具有约束和未知搜索空间的复杂问题时具有的优越性对ELM优化,更好地解决了ELM权值输出不稳定,易陷入局部最小值等问题。通过对SAELM、PSOELM、MFOELM三种预测算法进行寻优实验,结果表明MFO不但具有更快的求解速度,而且提高了ELM的预测精度。通过对国际公开的美国日气象数据降维,协同负荷数据进行预测进行对比实验,证明了该文方法的有效性和优越性。该文方法在唐山实际电网负荷预测中应用,为制定合理的电网运行方式提供依据。 展开更多
关键词 短期电力负荷预测 t分布随机邻接嵌入(tsne) 降维可视化分析 飞蛾火焰优化ELM算法(MFOELM)
在线阅读 下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法 被引量:4
7
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
在线阅读 下载PDF
融合CNN和ViT的声信号轴承故障诊断方法 被引量:10
8
作者 宁方立 王珂 郝明阳 《振动与冲击》 EI CSCD 北大核心 2024年第3期158-163,170,共7页
针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像... 针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像作为卷积神经网络的输入,用于隐式提取图像的深层特征,其输出作为视觉转换器的输入。视觉转换器用于提取信号的时间序列信息。并在输出层利用Softmax函数实现故障模式的识别。试验结果表明,该方法对于轴承故障诊断准确率较高。为了更好解释和优化提出的轴承故障诊断方法,利用t-分布领域嵌入算法对分类特征进行了可视化展示。 展开更多
关键词 短时傅里叶变换 卷积神经网络 视觉转换器 t-分布领域嵌入算法
在线阅读 下载PDF
基于改进蜘蛛蜂算法的无人机三维路径规划 被引量:1
9
作者 张颖 姜文刚 +1 位作者 陈一鸣 管文瑞 《电子测量技术》 北大核心 2024年第11期101-111,共11页
为了提高无人机路径规划在复杂环境中的收敛速度和收敛精度,避免陷入局部最优,提出了一种基于改进蜘蛛蜂算法的无人机三维路径规划方法。本文在传统SWO算法中引入自适应t分布扰动变异和Cubic映射策略更新搜索阶段位置,避免局部早熟收敛... 为了提高无人机路径规划在复杂环境中的收敛速度和收敛精度,避免陷入局部最优,提出了一种基于改进蜘蛛蜂算法的无人机三维路径规划方法。本文在传统SWO算法中引入自适应t分布扰动变异和Cubic映射策略更新搜索阶段位置,避免局部早熟收敛;然后,引入周期性随机振幅动态调整追逐和逃逸阶段搜索方向,帮助算法跳出局部最优,并结合螺旋更新机制和Levy飞行策略增强算法全局寻优能力,提高算法收敛精度;最后,将ISWO算法在8个测试函数中进行性能验证并实验仿真,结果表明,复杂地形环境中ISWO算法执行时间相比传统SWO算法减少了26.86%,并且较CPO、COA、GOOSE、PSO、GWO算法执行时间减少了13.80%~28.27%不等。同时,ISWO算法最小适应度值较传统SWO算法减小49.76%,较其他算法至少减小27.73%。由此得出,本文所提改进算法能够在复杂地形环境中快速得到一条更短且更安全的路径。 展开更多
关键词 路径规划 蜘蛛蜂算法 自适应t分布扰动 周期性随机振幅 螺旋更新机制
在线阅读 下载PDF
基于t-SNE降维和放射传播聚类算法的低压配电网相位识别 被引量:6
10
作者 柳守诚 王淳 +4 位作者 邹智辉 陈佳慧 周晗 刘伟 张旭 《中国电力》 CSCD 北大核心 2023年第5期108-117,共10页
智能电表的广泛普及和高级测量体系(advancedmeteringinfrastructure,AMI)的建立为分析配电网运行情况提供了大量监测信息与测量数据,而台区用户的相位信息变动又为准确掌握台区运行情况带来难题。针对台区用户的相位识别问题,提出了一... 智能电表的广泛普及和高级测量体系(advancedmeteringinfrastructure,AMI)的建立为分析配电网运行情况提供了大量监测信息与测量数据,而台区用户的相位信息变动又为准确掌握台区运行情况带来难题。针对台区用户的相位识别问题,提出了一种基于用户电压数据的t分布随机邻接嵌入(t-distributed stochastic neighbor embedding,t-SNE)特征提取及放射传播(affinity propagation,AP)聚类算法的相位识别方法。先对提取出的用户电压数据进行Z-score数据标准化处理,由t-SNE降维提取出数据特征,再采用放射传播聚类算法对用户进行相位识别。选取某市2个小区进行算例分析,采用评价指标比较了不同识别方法的识别效果,并分析了数据采集频率和计量误差对识别效果的影响。实际台区算例分析验证了所提方法的准确性,说明所提方法能够有效解决台区用户相位识别问题。 展开更多
关键词 低压台区 相位识别 机器学习 t分布随机邻接嵌入 放射传播聚类算法
在线阅读 下载PDF
混合多策略改进的蜣螂优化算法 被引量:3
11
作者 娄革伟 郑永煌 +3 位作者 陈均 谌廷政 索相波 刘旭亮 《计算机工程与应用》 CSCD 北大核心 2024年第24期97-109,共13页
针对原始蜣螂优化算法全局探索能力不足、易陷入局部最优以及收敛精度不理想等问题,提出了一种混合多策略改进的蜣螂优化算法。采用混沌映射结合随机反向学习策略初始化种群提高多样性,扩大解空间搜索范围,增强全局寻优能力;通过黄金正... 针对原始蜣螂优化算法全局探索能力不足、易陷入局部最优以及收敛精度不理想等问题,提出了一种混合多策略改进的蜣螂优化算法。采用混沌映射结合随机反向学习策略初始化种群提高多样性,扩大解空间搜索范围,增强全局寻优能力;通过黄金正弦策略实现个体动态搜索,提高算法遍历性;引入竞争机制增强信息交互,平衡全局探索与局部开发,加快算法收敛速度;最后在迭代后期利用自适应t分布变异对个体进行扰动,避免算法陷入局部最优。在23个基准测试函数中,将该算法与其他优化算法进行对比测试,结果表明,改进后的算法具有更强的寻优性能、更高的收敛精度和更好的稳定性。在具体工程设计实例中的应用验证了该算法在处理实际优化问题上的有效性。 展开更多
关键词 蜣螂优化算法 随机反向学习 混沌映射 黄金正弦策略 竞争机制 t分布变异 基准测试函数 工程设计实例
在线阅读 下载PDF
BH随机邻域嵌入在驾驶行为识别中的应用
12
作者 杨云开 范文兵 彭东旭 《计算机应用与软件》 北大核心 2021年第1期166-170,210,共6页
针对驾驶系统处理大量驾驶数据时出现的效率和精度不足的问题,提出一种基于巴恩斯哈特随机邻域嵌入(BH-SNE)和径向基函数神经网络(RBFNN)的识别算法。从手机传感器中获取加速度数据、陀螺仪数据和磁强计数据,融合这三种传感器数据,经过... 针对驾驶系统处理大量驾驶数据时出现的效率和精度不足的问题,提出一种基于巴恩斯哈特随机邻域嵌入(BH-SNE)和径向基函数神经网络(RBFNN)的识别算法。从手机传感器中获取加速度数据、陀螺仪数据和磁强计数据,融合这三种传感器数据,经过预处理后使用BH-SNE完成降维处理,将降维数据输入到RBFNN中识别出驾驶行为。实验结果表明,BH-SNE的效率远高于t分布式随机邻域嵌入(t-SNE),并且可视化效果优于t-SNE,该模型的整体识别率为98.8%,分类效果优于传统的机器学习算法。 展开更多
关键词 传感器数据 数据融合 数据可视化 t分布随机邻域嵌入 径向基函数神经网络
在线阅读 下载PDF
基于RCMFFDE和SSA-RVM的旋转机械损伤检测模型 被引量:1
13
作者 王显彬 孙阳 《机电工程》 北大核心 2025年第3期510-519,共10页
针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机... 针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机械损伤检测模型。首先,进行了基于RCMFFDE方法的特征提取,生成了特征样本,以定量反映旋转机械的不同损伤情况;然后,采用t-SNE方法,将原始高维故障特征映射至低维空间,获得了对故障更敏感的低维特征;最后,将敏感的低维故障特征向量输入至SSA-RVM多分类器中,进行了训练和测试,实现了旋转机械样本的故障识别目的;采用两种旋转机械数据集进行了实验,并从准确率、效率和抗噪性方面,将RCMFFDE-SSA-SVM方法与多种特征提取方法进行了对比。研究结果表明:RCMFFDE能用于有效提取旋转机械的故障特征,分别取得99.2%和100%的识别精度;而对敏感特征进行分类所获得的精度优于对原始特征进行分类的情形,前者比后者提高了4%;在模式识别中,SSA-RVM优于其他分类器;自制数据集的诊断精度达到了97%,特征提取的时间为16.05 s。 展开更多
关键词 非线性振动信号 特征提取时间 故障识别精度(诊断精度) 精细复合多尺度分数波动散布熵 t-分布随机邻域嵌入 麻雀搜索算法优化相关向量机
在线阅读 下载PDF
分组加权t-SNE的手写数字奇异类样本聚类方法研究 被引量:1
14
作者 杜芬 王彬 +3 位作者 薛洁 龙雨涵 刘辉 熊新 《小型微型计算机系统》 CSCD 北大核心 2018年第12期2729-2734,共6页
针对t-SNE算法在高维降维中存在的奇异类样本区分能力弱的不足,给出了一种将分组加权的改进t-SNE算法应用于数字手写体奇异类样本的聚类和识别中的方法.该方法根据样本在高维空间内的不同分布状况而应用不同的分组权值重新计算相似度,... 针对t-SNE算法在高维降维中存在的奇异类样本区分能力弱的不足,给出了一种将分组加权的改进t-SNE算法应用于数字手写体奇异类样本的聚类和识别中的方法.该方法根据样本在高维空间内的不同分布状况而应用不同的分组权值重新计算相似度,进而实现更合理的高维空间到低维空间的聚类映射.在基于MNIST构建的奇异类样本库上的对比试验结果表明,与t-SNE算法相比,分组加权t-SNE算法的聚类可视化与指标均得到了提高,其中查全率平均提高了4%,查准率平均提高了3. 3%,从而验证了该方法的可行性和有效性. 展开更多
关键词 奇异手写体数字识别 t分布随机领域嵌入算法 分组加权 高维降维
在线阅读 下载PDF
基于多源信息融合的柴油机典型故障诊断方法 被引量:1
15
作者 李宝月 余永华 +4 位作者 曹炳鑫 叶剑平 马炳杰 尧阳烽 赵国旭 《内燃机工程》 北大核心 2025年第1期73-79,90,共8页
针对基于单一振动信号难以区分柴油机不同部件故障,提出一种基于t分布–随机邻近嵌入(t-distributed stochastic neighbor embedding,t-SNE)多源信息融合的故障诊断方法。首先,通过试验对柴油机故障仿真模型进行标定,基于仿真模型获取... 针对基于单一振动信号难以区分柴油机不同部件故障,提出一种基于t分布–随机邻近嵌入(t-distributed stochastic neighbor embedding,t-SNE)多源信息融合的故障诊断方法。首先,通过试验对柴油机故障仿真模型进行标定,基于仿真模型获取不同故障状态下的热工参数与缸盖振动,选取相关性低的热工参数,提取振动信号的时域和频域特征参数,并利用t-SNE将振动特征参数与热工参数进行融合降维,基于支持向量机(support vector machine,SVM)方法对降维后的数据进行分类识别,构建柴油机故障诊断模型,最终取得了95.7%的故障识别准确率。与基于振动单一信号的故障诊断方法相比,多源信息融合能有效区分不同故障类别,提高柴油机故障识别准确率。 展开更多
关键词 柴油机 多源信息融合 t分布随机邻近嵌入 故障诊断
在线阅读 下载PDF
基于IMF奇异值熵和t-SNE的滚动轴承故障识别 被引量:9
16
作者 段萍 王旭 +2 位作者 丁承君 冯玉伯 秦越 《传感器与微系统》 CSCD 北大核心 2021年第3期134-137,共4页
针对滚动轴承振动信号非线性、非平稳性以及故障难以识别的问题,提出了一种经验小波变换(EWT)、奇异值熵和t分布随机领域嵌入(t-SNE)相结合的滚动轴承故障识别方法。对原始振动信号进行EWT分解得到若干固有模态分量(IMF),对IMF进行奇异... 针对滚动轴承振动信号非线性、非平稳性以及故障难以识别的问题,提出了一种经验小波变换(EWT)、奇异值熵和t分布随机领域嵌入(t-SNE)相结合的滚动轴承故障识别方法。对原始振动信号进行EWT分解得到若干固有模态分量(IMF),对IMF进行奇异值分解求取奇异值熵。利用t-SNE算法对奇异值熵组成的特征矩阵进行降维,所提取的低维特征能够有效反映故障信息。最后,将低维特征输入到Kmeans分类器中进行模式识别。将该方法应用到滚动轴承实验中并与EMD+奇异值熵+t-SNE、EWT+奇异值熵+PCA方法进行对比,结果表明:所提方法能够更有效地提取滚动轴承的故障特征,提高了故障识别的精度。 展开更多
关键词 经验小波变换 奇异值熵 t分布随机领域嵌入 故障识别
在线阅读 下载PDF
基于DTCWPT和t-SNE的去噪方法及在故障诊断中的应用 被引量:11
17
作者 梁伟阁 佘博 田福庆 《电子测量与仪器学报》 CSCD 北大核心 2018年第5期74-81,共8页
为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWP... 为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWPT分解的多尺度特性以及t-SNE的非线性降维能力。将振动信号进行双树复小波包分解,依据各尺度小波包系数Shannon熵值搜索最佳小波包基,利用提出的新的阈值函数,对最佳小波包基的小波包系数进行去噪并单支重构组成高维信号空间,然后,采用t-SNE提取高维空间的低维流形,对低维信号序列进一步采用阈值去噪,利用谱回归分析重构回一维信号序列。最后,通过对仿真信号与滚动轴承振动信号进行去噪,结果证实了方法具有良好的非线性去噪性能,将仿真信号的信噪比从-1提高到8.6 d B,并且能更有效的提取强噪声干扰下滚动轴承的故障特征频率。 展开更多
关键词 双树复小波包 t分布随机近邻嵌入 谱回归分析 去噪 故障诊断
在线阅读 下载PDF
基于t-SNE与模糊聚类的电动汽车行驶工况构建 被引量:9
18
作者 王金刚 徐航 +2 位作者 刘海 于晗正男 刘昱 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第6期126-132,146,共8页
通过构建典型城市的电动汽车行驶工况,可对其行驶与能耗规律进行预测。以天津市为例,采集10辆纯电动乘用车1个月的实际道路数据,基于短行程片段提取20个特征参数和24个分布参数,使用t分布领域嵌入算法、模糊C均值聚类及灰色关联分析等... 通过构建典型城市的电动汽车行驶工况,可对其行驶与能耗规律进行预测。以天津市为例,采集10辆纯电动乘用车1个月的实际道路数据,基于短行程片段提取20个特征参数和24个分布参数,使用t分布领域嵌入算法、模糊C均值聚类及灰色关联分析等方法进行工况构建;利用MAPE和K-S检验验证构建工况的有效性;并对比分析了国内外典型的行驶工况。研究结果表明:已构建工况与实际道路数据MAPE误差为3.82%;K-S检验值为0.0471和0.0126;所构建工况符合实际的行驶情况。 展开更多
关键词 车辆工程 纯电动汽车 行驶工况 t分布领域嵌入 聚类分析
在线阅读 下载PDF
基于特征融合的往复式压缩机气阀故障诊断
19
作者 王康 宋朝琪 +4 位作者 聂方 袁宗泽 任护国 尧阳烽 余永华 《机床与液压》 北大核心 2025年第1期151-156,共6页
针对仅依靠单一信号难以准确诊断气阀故障且缺乏多参数综合利用的气阀故障诊断方法的问题,提出一种基于t-分布随机近邻嵌入(t-SNE)特征降维融合的往复式压缩机气阀故障诊断方法。以某型四级高压往复式压缩机为研究对象,通过故障模拟试... 针对仅依靠单一信号难以准确诊断气阀故障且缺乏多参数综合利用的气阀故障诊断方法的问题,提出一种基于t-分布随机近邻嵌入(t-SNE)特征降维融合的往复式压缩机气阀故障诊断方法。以某型四级高压往复式压缩机为研究对象,通过故障模拟试验获取进、排气阀不同典型故障下的热力参数和声发射信号,利用t-SNE降维算法将不同信号源提取的高维特征参数融合降维,并基于K-近邻算法(KNN)构建气阀故障诊断模型。结果表明:与其他降维算法相比,经t-SNE降维后,同类样本的类内距离小,不同类型故障样本类间距离较大,可以有效区分进排气阀的各类故障;多信号特征融合降维后,基于KNN分类算法构建的气阀故障诊断模型能有效识别气阀故障,其准确率为100%。 展开更多
关键词 气阀 故障诊断 t-分布随机近邻嵌入 特征融合 K-近邻算法
在线阅读 下载PDF
基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断 被引量:11
20
作者 陈剑 程明 《电子测量与仪器学报》 CSCD 北大核心 2022年第4期195-204,共10页
针对滚动轴承早期故障特征微弱且难以有效辨识的问题,提出一种基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断方法。利用多个传感器采集轴承在不同故障模式下的声振信号,将每个信号通过VMD分解得到K个IMF分量;对各个IM... 针对滚动轴承早期故障特征微弱且难以有效辨识的问题,提出一种基于tSNE-ASC特征选择和DSmT融合决策的滚动轴承声振信号故障诊断方法。利用多个传感器采集轴承在不同故障模式下的声振信号,将每个信号通过VMD分解得到K个IMF分量;对各个IMF分量进行特征提取,构建各个特征的数据集矩阵;利用tSNE将各特征数据集矩阵降维至二维,计算平均轮廓系数(ASC);根据ASC大于临界值提取出声振故障信号的敏感特征;基于诊断模型实现轴承故障的初级诊断;利用DSmT将声振信号初级诊断结果进行融合决策,得出最终的诊断结论。实验结果表明:基于tSNE-ASC的特征选择方法能有效提取混合域特征中的敏感特征,在不同工况、不同诊断模型中均具有很高的诊断精度;DSmT决策融合有效降低了单一信号诊断的不确定性,在变载荷和升降速非平稳工况下均有很高的诊断精度。 展开更多
关键词 声振信号 轴承故障诊断 变分模态分解 t分布随机邻近嵌入 平均轮廓系数 DSmt融合决策
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部