期刊文献+

混合多策略改进的蜣螂优化算法

Improved Dung Beetle Optimization Algorithm by Hybrid Multi-Strategy
在线阅读 下载PDF
导出
摘要 针对原始蜣螂优化算法全局探索能力不足、易陷入局部最优以及收敛精度不理想等问题,提出了一种混合多策略改进的蜣螂优化算法。采用混沌映射结合随机反向学习策略初始化种群提高多样性,扩大解空间搜索范围,增强全局寻优能力;通过黄金正弦策略实现个体动态搜索,提高算法遍历性;引入竞争机制增强信息交互,平衡全局探索与局部开发,加快算法收敛速度;最后在迭代后期利用自适应t分布变异对个体进行扰动,避免算法陷入局部最优。在23个基准测试函数中,将该算法与其他优化算法进行对比测试,结果表明,改进后的算法具有更强的寻优性能、更高的收敛精度和更好的稳定性。在具体工程设计实例中的应用验证了该算法在处理实际优化问题上的有效性。 An improved dung beetle optimization algorithm using hybrid multi-strategy is proposed,to make up for the shortcomings of the original dung beetle optimization algorithm,such as insufficient of global exploration ability,being easy to fall into local optimization and unsatisfactory convergence accuracy,etc.The chaotic mapping and random opposition-based learning are used to initialize the population to improve the diversity,expand the search range of the solution space,and enhance the global optimization ability.The golden sine strategy is applied to facilitate individual dynamic search and enhance the ergodicity of algorithm.The introduction of competitive mechanism enhances information exchange,balances global exploration with local development,and accelerates the convergence speed of algorithm.In the late iterations,the adaptive t-distribution mutation is introduced to provide perturbation and avoid falling into local optimization.The pro-posed algorithm is compared with other optimization algorithms by 23 benchmark test functions.The results show that the improved algorithm has stronger optimization performance,higher convergence accuracy and better stability.The applica-tion of the proposed algorithm in engineering design examples demonstrate its effectiveness in dealing with real optimiza-tion problems.
作者 娄革伟 郑永煌 陈均 谌廷政 索相波 刘旭亮 LOU Gewei;ZHENG Yonghuang;CHEN Jun;SHEN Tingzheng;SUO Xiangbo;LIU Xuliang(Jiuquan Satellite Launch Center,Jiuquan,Gansu 735700,China)
出处 《计算机工程与应用》 CSCD 北大核心 2024年第24期97-109,共13页 Computer Engineering and Applications
基金 航天智能自主发射技术试验验证项目。
关键词 蜣螂优化算法 随机反向学习 混沌映射 黄金正弦策略 竞争机制 t分布变异 基准测试函数 工程设计实例 dung beetle optimization algorithm random opposition-based learning chaotic mapping golden sine strategy competitive mechanism t-distribution mutation benchmark test function engineering design example
作者简介 娄革伟(1990-),男,硕士研究生,工程师,研究方向为航天发射地面支持技术;通信作者:郑永煌(1969-),男,博士,正高级工程师,研究方向为航天测发测控总体技术,E-mail:jslc1958@163.com;陈均(1977-),男,硕士研究生,高级工程师,研究方向为航天发射地面支持技术;谌廷政(1972-),男,博士,正高级工程师,研究方向为航天测试发射技术;索相波(1973-),男,博士,高级工程师,研究方向为航天发射地面支持技术;刘旭亮(1983-),男,硕士研究生,工程师,研究方向为航天发射地面支持技术。
  • 相关文献

参考文献10

二级参考文献82

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2于颖,李永生,於孝春,胡毅,陈立苏.波纹管的结构优化设计[J].压力容器,2005,22(12):22-24. 被引量:24
  • 3TAN Guan-Zheng,HE Huan,SLOMAN Aaron.Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots[J].自动化学报,2007,33(3):279-285. 被引量:26
  • 4王晓红,吴德会.基于SVR的传感器Hammerstein模型辨识[J].传感技术学报,2007,20(5):1042-1046. 被引量:5
  • 5KENNEDY J, EBERHART R. Particle swarm optimization[C]// IEEE Int'l Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995:1 942-1 948.
  • 6KENNEDY J, EBERHART R. Discrete binary version of the particle swarm algorithm[C]// Proceedings of the IEEE International Conference on Systems, Man. and Cybernetics. Orlando, FL, USA: IEEE, 1997, 5:4 104- 4 108.
  • 7JUAN J. Particle swarm optimization applications in power system engineering[D]. Puerto Rico: University of Puerto Rico, 2004.
  • 8TAYAL M. Particle swarm optimization for mechanical design[D]. Texas: University of Texas, 2003.
  • 9SHI Y, EBERHART R C. Parameter selection in particle swarm optimization [C]// Evolutionary Programming Ⅶ. Lecture Notes in Computer Science. Berlin, 1998, 1 447: 591-600.
  • 10SHIN D K. A penalty approach for nonlinear optimization with discrete design variables[J]. Engineering Optimization, 1990, 16. 29-42.

共引文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部