Multirate systems are abundant in industry; for example, many soft-sensor design problems are related to modeling, parameter identification, or state estimation involving multirate systems. The study of multirate syst...Multirate systems are abundant in industry; for example, many soft-sensor design problems are related to modeling, parameter identification, or state estimation involving multirate systems. The study of multirate systems goes back to the early 1950's, and has become an active research area in systems and control. This paper briefly surveys the history of development in the area of multirate systems, and introduces some basic concepts and latest results on multirate systems, including a polynomial transformation technique and the lifting technique as tools for handling multirate systems, lifted state space models, parameter identification of dual-rate systems, how to determine fast single-rate models from dual-rate models and directly from dual-rate data, and a hierarchical identification method for general multirate systems. Finally, some further research topics for multirate systems are given.展开更多
火电机组磨煤机存在运行条件恶劣、故障频发等问题,对磨煤机进行故障预警,可以有效防止一些常见故障的发生,从而保证火电机组的安全运行。为此,提出一种基于相互邻近度的密度峰值聚类和多元状态估计的磨煤机故障预警方法。首先,采用核...火电机组磨煤机存在运行条件恶劣、故障频发等问题,对磨煤机进行故障预警,可以有效防止一些常见故障的发生,从而保证火电机组的安全运行。为此,提出一种基于相互邻近度的密度峰值聚类和多元状态估计的磨煤机故障预警方法。首先,采用核主元分析选取磨煤机的主要状态参数,同时采用集合经验模态分解对历史运行数据进行去噪,进一步优化数据质量;然后,采用基于相互邻近度的密度峰值聚类(density peaks clustering based on mutual neighborhood degrees,DPC-MND)方法构建动态记忆矩阵,利用多元状态估计技术(multivariate state estimation techniques,MSET)对磨煤机正常运行工况下的历史数据进行建模,并确定磨煤机的运行状态。最后,以安徽某电厂ZGM113G型中速磨煤机为例进行验证,结果表明该方法可以实现对磨煤机故障的有效预警。展开更多
提出了一种基于多元状态估计(Multivariate State Estimation Techniques,MSET)和序贯概率比检验(Sequential Probability Ratio Test,SPRT)的内燃机气阀机构振动监测方法。在该方法中,首先建立正常工况下各监测参数之间的关联模型;然...提出了一种基于多元状态估计(Multivariate State Estimation Techniques,MSET)和序贯概率比检验(Sequential Probability Ratio Test,SPRT)的内燃机气阀机构振动监测方法。在该方法中,首先建立正常工况下各监测参数之间的关联模型;然后根据系统当前观测特征向量与各建模样本特征向量之间的相似性程度,使用MSET对当前观测特征向量进行估计,得到与观测特征向量相对应的估计残差;最后使用SPRT对观测特征向量的估计残差进行均值和方差检验,确定系统的工作状态。试验中,通过设置不同的气阀间隙大小来模拟内燃机气阀机构不同程度的异常工况,以整周期缸盖振动信号幅值域特征作为系统工况监测参数。试验结果表明,MSET可有效增强故障状态下的信号特征呈现,而SPRT可在较少的周期内实现内燃机气阀机构异常工况的识别,MSET和SPRT的结合有效地实现了对内燃机气阀机构异常工况的早期监测。展开更多
针对传统单域特征指标无法充分表征轴承性能退化的状态信息,而基于多域高维特征向量的重构评估模型存在信息冗余且易受到不一致优化目标的影响而导致模型次优性能的问题,提出一种基于多元状态估计(multivariate state estimation techni...针对传统单域特征指标无法充分表征轴承性能退化的状态信息,而基于多域高维特征向量的重构评估模型存在信息冗余且易受到不一致优化目标的影响而导致模型次优性能的问题,提出一种基于多元状态估计(multivariate state estimation technique, MSET)重构模型整体优化的轴承性能退化评估方法。首先,提取轴承振动信号的多个时域和频域特征、自回归模型系数和三层小波包Renyi熵组成高维多域特征向量,同时将健康状态的高维特征向量构建MSET重构模型的历史记忆矩阵;然后,利用遗传算法对轴承高维特征向量和MSET模型中的历史记忆矩阵进行同步联合优化,从而实现特征优选和重构评估模型的整体自适应优化,进一步提高降维后特征向量与重构模型的匹配性;最后,利用余弦相似度作为故障程度指标构建轴承性能退化评估曲线。西安交大-昇阳科技联合实验室滚动轴承疲劳试验全寿命数据分析结果表明,所提方法具有一定的有效性和可靠性。展开更多
基金Supported by the Natural Sciences and Engineering Research Council of Canada and National Natural Science Foundation of P.R.China
文摘Multirate systems are abundant in industry; for example, many soft-sensor design problems are related to modeling, parameter identification, or state estimation involving multirate systems. The study of multirate systems goes back to the early 1950's, and has become an active research area in systems and control. This paper briefly surveys the history of development in the area of multirate systems, and introduces some basic concepts and latest results on multirate systems, including a polynomial transformation technique and the lifting technique as tools for handling multirate systems, lifted state space models, parameter identification of dual-rate systems, how to determine fast single-rate models from dual-rate models and directly from dual-rate data, and a hierarchical identification method for general multirate systems. Finally, some further research topics for multirate systems are given.
文摘火电机组磨煤机存在运行条件恶劣、故障频发等问题,对磨煤机进行故障预警,可以有效防止一些常见故障的发生,从而保证火电机组的安全运行。为此,提出一种基于相互邻近度的密度峰值聚类和多元状态估计的磨煤机故障预警方法。首先,采用核主元分析选取磨煤机的主要状态参数,同时采用集合经验模态分解对历史运行数据进行去噪,进一步优化数据质量;然后,采用基于相互邻近度的密度峰值聚类(density peaks clustering based on mutual neighborhood degrees,DPC-MND)方法构建动态记忆矩阵,利用多元状态估计技术(multivariate state estimation techniques,MSET)对磨煤机正常运行工况下的历史数据进行建模,并确定磨煤机的运行状态。最后,以安徽某电厂ZGM113G型中速磨煤机为例进行验证,结果表明该方法可以实现对磨煤机故障的有效预警。
文摘提出了一种基于多元状态估计(Multivariate State Estimation Techniques,MSET)和序贯概率比检验(Sequential Probability Ratio Test,SPRT)的内燃机气阀机构振动监测方法。在该方法中,首先建立正常工况下各监测参数之间的关联模型;然后根据系统当前观测特征向量与各建模样本特征向量之间的相似性程度,使用MSET对当前观测特征向量进行估计,得到与观测特征向量相对应的估计残差;最后使用SPRT对观测特征向量的估计残差进行均值和方差检验,确定系统的工作状态。试验中,通过设置不同的气阀间隙大小来模拟内燃机气阀机构不同程度的异常工况,以整周期缸盖振动信号幅值域特征作为系统工况监测参数。试验结果表明,MSET可有效增强故障状态下的信号特征呈现,而SPRT可在较少的周期内实现内燃机气阀机构异常工况的识别,MSET和SPRT的结合有效地实现了对内燃机气阀机构异常工况的早期监测。
文摘滚动轴承性能退化评估是预诊断的提前和基础,对在役滚动轴承实施在线状态监测和性能退化评估具有重要意义。针对概率相似度量评估方法存在模型复杂、容易过早饱和等现象,提出一种基于自回归时序(autoregressive model,简称AR)模型和多元状态估计(multivariate state estimation technique,简称MSET)的滚动轴承性能在线评估方法,其中AR模型用于提取轴承振动信号的状态特征,MSET模型用于重构AR模型系数。首先,提取正常运行状态下振动信号的AR模型系数构建MSET模型的历史记忆矩阵;其次,将待测信号的AR系数作为观测向量输入MSET模型中得到重构后的估计向量;最后,由原始AR系数和重构AR系数分别构造自回归模型,并各自完成对待测信号的时序建模,将两自回归模型所得残差序列的均方根值之差作为性能劣化程度指标。离散实验数据和全寿命疲劳实验数据分析结果表明,该方法能够有效检测早期故障,且具有与轴承故障发展趋势一致性更好等优点。
文摘针对传统单域特征指标无法充分表征轴承性能退化的状态信息,而基于多域高维特征向量的重构评估模型存在信息冗余且易受到不一致优化目标的影响而导致模型次优性能的问题,提出一种基于多元状态估计(multivariate state estimation technique, MSET)重构模型整体优化的轴承性能退化评估方法。首先,提取轴承振动信号的多个时域和频域特征、自回归模型系数和三层小波包Renyi熵组成高维多域特征向量,同时将健康状态的高维特征向量构建MSET重构模型的历史记忆矩阵;然后,利用遗传算法对轴承高维特征向量和MSET模型中的历史记忆矩阵进行同步联合优化,从而实现特征优选和重构评估模型的整体自适应优化,进一步提高降维后特征向量与重构模型的匹配性;最后,利用余弦相似度作为故障程度指标构建轴承性能退化评估曲线。西安交大-昇阳科技联合实验室滚动轴承疲劳试验全寿命数据分析结果表明,所提方法具有一定的有效性和可靠性。