期刊文献+

基于多元状态估计和偏离度的电厂风机故障预警 被引量:47

Early Fault Warning of Power Plant Fans Based on MSET and the Deviation Degree
在线阅读 下载PDF
导出
摘要 为了解决风机故障预警问题,提出一种基于多元状态估计技术(MSET)和偏离度的方法.利用MSET建立风机正常运行状态下的非参数模型,对观测向量进行最优估计并得到估计向量,观测向量与估计向量之间的差异可以反映风机工作是否异常.引入偏离度定量衡量观测向量与估计向量之间的偏离程度,有利于捕捉故障发展过程,然后利用滑动窗口法确定故障预警阈值.当平均偏离度超过预警阈值时,发出报警信息提醒运行人员处理.以长春某热电厂引风机的某次故障为例进行应用研究.结果表明:该方法可以及时发现风机异常,实现风机实时故障预警. To realize early fault warning of power plant fans, a method was proposed based on multivariate state estimation technique (MSET) and the deviation degree. Using MSET, a non-parametric model of the fan was constructed under normal operation conditions, based on which observed vectors were optimally evaluated to obtain the estimated vectors, and the difference between estimated and observed vectors is able to reflect the incipient failure. A deviation degree was introduced to quantify the difference between estimated and observed vectors, so as to capture the fault development process, and to send out early warning for relevant operators to deal with the trouble, when the average deviation has exceeded the predefined threshold set by sliding window method. The method was applied to detect the fault of an induced fan in a power plant in Changchun. Application results show that the method can help to discover abnormal status of fans promptly, and achieve the purpose of online early fault warning of fans.
出处 《动力工程学报》 CAS CSCD 北大核心 2016年第6期454-460,共7页 Journal of Chinese Society of Power Engineering
基金 国家重点基础研究发展计划(973计划)资助项目(2012CB215203) 国家自然科学基金重点资助项目(51036002)
关键词 电厂风机 多元状态估计 故障预警 滑动窗口法 power plant fan multivariate state estimation technique early fault warning sliding window method
作者简介 刘涛(1990-),男,湖北广水人,硕士研究生,研究方向为火电厂设备故障诊断与预警.电话(Tel.):18901070798 E-mail:ltncepu@gmail.com.
  • 相关文献

参考文献12

  • 1孙建平,高明.改进“峰”方法的多元状态估计技术用于电站风机状态监测[J].华北电力大学学报(自然科学版),2013,40(3):91-94. 被引量:19
  • 2郭鹏,徐明,白楠,马登昌.基于SCADA运行数据的风电机组塔架振动建模与监测[J].中国电机工程学报,2013,33(5):128-135. 被引量:62
  • 3姚良,李艾华,孙红辉,张振仁.基于MSET和SPRT的内燃机气阀机构振动监测[J].振动工程学报,2009,22(2):150-155. 被引量:8
  • 4SINGER R M, GROSS K C, HERZOG J P, et al. Model-based nuclear power plant monitoring and fault detection: theoretical foundations [ C]//9th Interna- tional Conference on Intelligent Systems Applications to Power Systems. Seoul, Korea: Argonne National Lab, 1997.
  • 5GROSS K C, SINGER R M, WEGERICH S W, et al. Application of a model-based fault detection sys- tem to nuclear plant signals[C]//9th International Conference on Intelligent Systems Applications to Pow- er System. Seoul, Korea: Argonne National Lab, 1997.
  • 6HERZOG J P, WEGERICH S W, GROSS K C. MSET modeling of crystal river-3 Venturi flow me- ters[C]//6th International Conference on Nuclear En- gineering. USA: ASME, 1998.
  • 7郭鹏,David Infield,杨锡运.风电机组齿轮箱温度趋势状态监测及分析方法[J].中国电机工程学报,2011,31(32):129-136. 被引量:125
  • 8WEGERICH S W. Similarity based modeling of time synchronous averaged vibration signals for machinery health monitoring [C]//Aerospace Conference 2004.Montana, USA: IEEE, 2004.
  • 9CHENG S F, PECHT M G. Multivariate state esti- mation technique for remaining useful life prediction of electronic products[C]//Proceedings of AAAI Fall Symp Artif Intell Prognostics. Arlington, USA. Is. n. 1, 2007: 26-32.
  • 10CASSIDY K J, GROSS K C, MALEKPOUR A. Ad- vanced pattern recognition for detection of complex software aging phenomena in online transaction pro- cessing servers [C]//Dependable Systems and Net- works 2002. Washington D C, USA: IEEE, 2002.

二级参考文献69

共引文献212

同被引文献413

引证文献47

二级引证文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部