Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with the...Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with thermodynamic calculation,X-ray photoelectron spectroscopy(XPS)and electron probe microanalysis(EPMA).The XRD and thermodynamic analyses revealed that the Sb_(3)O_(6)(OH)was reduced into Sb_(2)O_(4)and Sb_(2)O_(3),and was transformed into Sb_(2)S_(3)after introducing sulfur at high temperatures.Flotation test results show that flotation recovery of the stibiconite after sulfidation reaches 90.3%.Ultraviolet spectrophotometry tests confirm that adsorption capacity of sodium butyl xanthate(SBX)on surface of the roasted products has a positive relationship with S/Sb mole ratio.XPS analyses indicate that Sb-bearing species including mainly Sb_(2)S_(3),Sb_(2)O_(3)and Sb_(2)(SO_(4))_(3) are formed at the surface of particle after sulfidation.The EPMA analyses verify that the Sb_(2)S_(3)is generated at the outer layer of sample after sulfidation roasting,but the particle interior is mainly composed of antimony oxides.The sulfur atmosphere induces the outward migration of oxygen to form Sb_(2)O_(4).Then,the Sb_(2)O_(4)is transformed into Sb_(2)O_(3)in two pathways,and the Sb_(2)S_(3)is formed.These findings will provide theoretical support for recovering antimony from antimony oxide ores by xanthate flotation methods.展开更多
Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of v...Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of various fracture surfaces with distinct properties during crushing and grinding,resulting in surface anisotropy.In this study,we explored the surface anisotropy of malachite and further investigated its sulfidation mechanism from the coordination chemistry perspective,considering the influence of the Jahn-Teller effect on malachite sulfidation.Computational results reveal that the penta-coordinated Cu ions on the malachite(201)and(010)surfaces exhibit stronger activity compared to those on the malachite(201)surface.Additionally,the tetra-coordinated structure formed by HS^(−)adsorption on the malachite(010)and(201)surfaces is more stable,with more negative adsorption energy,compared to the hexa coordinated structure formed by HS−adsorption on the(201)surface.The sulfidized malachite surface has an additional pair ofπelectron and smaller HOMO(highest occupied molecular orbital)-LUMO(lowest unoccupied molecular orbital)gap with xanthate molecules,causing strongerπbackbonding with xanthate.This study provides new insights into the surface sulfidation mechanism of malachite and offers a theoretical reference for the design of targeted flotation reagents.展开更多
Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xantha...Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xanthan gum(XG)as a non-toxic and environmentally friendly depressant of talc,olivine,and serpentine.The effects and mechanisms of XG on the aggregation and flotation behavior of talc,olivine and serpentine were investigated by flotation tests,sedimentation tests,IC-FBRM particle size analysis tests,adsorption quantity tests,Fourier transform infrared spectroscopy(FTIR)tests,X-ray photoelectron spectroscopy(XPS)analysis tests and Zeta potential tests.The flotation results indicated that when the three minerals were mixed,XG caused the talc-serpentine aggregation in the solution to shift to olivine-serpentine aggregation,with the remaining XG adsorbing on talc to depress its flotation.In addition,combining XPS and zeta potential tests,the-OH(hydroxyl)groups in XG molecules preferentially adsorbed on Mg sites on the surface of olivine through chemical bonding.The surface potential of olivine significantly shifted to a more negative value,with the negative charge on the olivine surface far exceeding that on the talc surface.This resulted in an increased aggregation effect between positively charged serpentine and negatively charged olivine due to enhanced electrostatic forces.展开更多
The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of li...The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.展开更多
Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble si...Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.展开更多
The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-200...The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-2000),was used to evaluate its effect on the collecting performance of sodium oleate during scheelite flotation at low temperatures.The effect of PEG-2000 on the flotation of scheelite with the collector sodium oleate(NaOL)was studied by flotation tests,surface tension tests,infrared spectral analysis,and zeta potential measurements.Flotation tests showed that adding PEG-2000 can enhance the collecting ability of NaOL on scheelite at low temperature(5℃).The recovery of scheelite with the mixed collector of PEG-200 and NaOL is 4.39%higher than that with NaOL only.The surface tension tests,infrared spectral analysis and zeta potential measurements revealed that PEG-2000 and OL^(−)are co-adsorbed on the scheelite surface at low temperatures.The presence of PEG-2000 promoted the increase of the adsorption concentration of oleate ions(OL^(−))on the scheelite surface.The reason was that PEG-2000 has a shielding effect on the electrostatic repulsion between the OL^(−)groups,which changes the micellar configuration of OL^(−)in the solution system and makes the OL^(−)gather more tightly on the surface of scheelite,leading to the enhancement of its hydrophobicity.This discovery provides a reference for the development of collecting reagents for efficient flotation recovery of scheelite under low temperature environment.展开更多
基金Projects(52074139,51964027)supported by the National Natural Science Foundation of ChinaProject(KKS 2202152011)supported by the High-level Talents of Yunnan Province,China。
文摘Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with thermodynamic calculation,X-ray photoelectron spectroscopy(XPS)and electron probe microanalysis(EPMA).The XRD and thermodynamic analyses revealed that the Sb_(3)O_(6)(OH)was reduced into Sb_(2)O_(4)and Sb_(2)O_(3),and was transformed into Sb_(2)S_(3)after introducing sulfur at high temperatures.Flotation test results show that flotation recovery of the stibiconite after sulfidation reaches 90.3%.Ultraviolet spectrophotometry tests confirm that adsorption capacity of sodium butyl xanthate(SBX)on surface of the roasted products has a positive relationship with S/Sb mole ratio.XPS analyses indicate that Sb-bearing species including mainly Sb_(2)S_(3),Sb_(2)O_(3)and Sb_(2)(SO_(4))_(3) are formed at the surface of particle after sulfidation.The EPMA analyses verify that the Sb_(2)S_(3)is generated at the outer layer of sample after sulfidation roasting,but the particle interior is mainly composed of antimony oxides.The sulfur atmosphere induces the outward migration of oxygen to form Sb_(2)O_(4).Then,the Sb_(2)O_(4)is transformed into Sb_(2)O_(3)in two pathways,and the Sb_(2)S_(3)is formed.These findings will provide theoretical support for recovering antimony from antimony oxide ores by xanthate flotation methods.
基金Projects(52074356,U22A20170)supported by the National Natural Science Foundation of ChinaProject(2022YFC2904503)supported by the National Key R&D Program of China+4 种基金Project(2023SK2061)supported by the Special Fund for the Construction of Hunan Innovative Province,ChinaProject(2023CXQD002)supported by the Innovation-driven Project of Central South University,ChinaProject(2022RC1183)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(kq2009005)supported by the Changsha Science and Technology Project(Changsha Outstanding Innovative Youth Training Program),ChinaProject supported by the High-performance Computing Centers of Central South University,China。
文摘Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of various fracture surfaces with distinct properties during crushing and grinding,resulting in surface anisotropy.In this study,we explored the surface anisotropy of malachite and further investigated its sulfidation mechanism from the coordination chemistry perspective,considering the influence of the Jahn-Teller effect on malachite sulfidation.Computational results reveal that the penta-coordinated Cu ions on the malachite(201)and(010)surfaces exhibit stronger activity compared to those on the malachite(201)surface.Additionally,the tetra-coordinated structure formed by HS^(−)adsorption on the malachite(010)and(201)surfaces is more stable,with more negative adsorption energy,compared to the hexa coordinated structure formed by HS−adsorption on the(201)surface.The sulfidized malachite surface has an additional pair ofπelectron and smaller HOMO(highest occupied molecular orbital)-LUMO(lowest unoccupied molecular orbital)gap with xanthate molecules,causing strongerπbackbonding with xanthate.This study provides new insights into the surface sulfidation mechanism of malachite and offers a theoretical reference for the design of targeted flotation reagents.
基金Project(52264022)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KJSKL-2025-17)supported by the Open Foundation of State Key Laboratory of Mineral Processing,China。
文摘Finding appropriate flotation reagents to separate copper-nickel sulfide ores from various magnesium silicate gangue minerals has always been a challenge in the mineral processing industry.This study introduced xanthan gum(XG)as a non-toxic and environmentally friendly depressant of talc,olivine,and serpentine.The effects and mechanisms of XG on the aggregation and flotation behavior of talc,olivine and serpentine were investigated by flotation tests,sedimentation tests,IC-FBRM particle size analysis tests,adsorption quantity tests,Fourier transform infrared spectroscopy(FTIR)tests,X-ray photoelectron spectroscopy(XPS)analysis tests and Zeta potential tests.The flotation results indicated that when the three minerals were mixed,XG caused the talc-serpentine aggregation in the solution to shift to olivine-serpentine aggregation,with the remaining XG adsorbing on talc to depress its flotation.In addition,combining XPS and zeta potential tests,the-OH(hydroxyl)groups in XG molecules preferentially adsorbed on Mg sites on the surface of olivine through chemical bonding.The surface potential of olivine significantly shifted to a more negative value,with the negative charge on the olivine surface far exceeding that on the talc surface.This resulted in an increased aggregation effect between positively charged serpentine and negatively charged olivine due to enhanced electrostatic forces.
基金Project(52204363)supported by the National Natural Science Foundation of ChinaProject(2024JJ8042)supported by the Hunan Natural Science Foundation,ChinaProject(22C0220)supported by the Education Department of Hunan Province,China。
文摘The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.
基金Project(ID42787)supported by the Istanbul Technical University,BAP(Scientific Research Project)Department,Turkey。
文摘Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.
基金Project(2023JJ10070)supported by the Hunan Provincial Outstanding Youth Fund,ChinaProjects(51974364,52074355,52304316)supported by the National Natural Science Foundation of China。
文摘The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-2000),was used to evaluate its effect on the collecting performance of sodium oleate during scheelite flotation at low temperatures.The effect of PEG-2000 on the flotation of scheelite with the collector sodium oleate(NaOL)was studied by flotation tests,surface tension tests,infrared spectral analysis,and zeta potential measurements.Flotation tests showed that adding PEG-2000 can enhance the collecting ability of NaOL on scheelite at low temperature(5℃).The recovery of scheelite with the mixed collector of PEG-200 and NaOL is 4.39%higher than that with NaOL only.The surface tension tests,infrared spectral analysis and zeta potential measurements revealed that PEG-2000 and OL^(−)are co-adsorbed on the scheelite surface at low temperatures.The presence of PEG-2000 promoted the increase of the adsorption concentration of oleate ions(OL^(−))on the scheelite surface.The reason was that PEG-2000 has a shielding effect on the electrostatic repulsion between the OL^(−)groups,which changes the micellar configuration of OL^(−)in the solution system and makes the OL^(−)gather more tightly on the surface of scheelite,leading to the enhancement of its hydrophobicity.This discovery provides a reference for the development of collecting reagents for efficient flotation recovery of scheelite under low temperature environment.