This paper is concerned with the control synthesis problem via dynamic output feedback for linear continuous-time systems with mixed frequency small gain specifications.A new method for designing dynamic output feedba...This paper is concerned with the control synthesis problem via dynamic output feedback for linear continuous-time systems with mixed frequency small gain specifications.A new method for designing dynamic output feedback controllers is presented such that the resulting closed-loop systems are asymptotically stable and meet the requirements of small gain specifications in both finite frequency ranges and the entire frequency range.The design conditions are given in terms of solutions to a set of linear matrix inequalities(LMIs).Finally,a numerical example is given to illustrate the design procedure and the advantage of the proposed method in comparison with the existing one.展开更多
Introduction The success in lineage-specific differentiation of human embryonic and induced pluripotent stem(hES/iPS)cells raises new hopes for cell-based therapies.It is envisioned that cells differentiated from hES/...Introduction The success in lineage-specific differentiation of human embryonic and induced pluripotent stem(hES/iPS)cells raises new hopes for cell-based therapies.It is envisioned that cells differentiated from hES/iPS cells can be used to replace or repair damaged or diseased cells and tissues in body.This has not yet been possible due to the difficulty in generating biologically functional cells in vitro.While many factors may contribute to these failures,the lack of tissue niches in the current differentiation systems has been viewed in impairing the maturation of these cells.As revealed by studying mice embryo development,organ development requires strict temporal and spatial control at each stage.The stepwise hESC differentiation展开更多
In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal sys...In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal system based on that model to achieve hierarchical and modular development and verification methods. Anumber of refinement rules are used to decompose the specification into smaller ones and calculate program fromthe展开更多
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti...Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.展开更多
Evaluation of Gamma Index Analysis for Detecting Errors in Patient-specific Quality Assurance in Intensity Modulated Radiotherapy Taylan Tugrul1(1.Department of Radiation Oncology,Medicine Faculty of Van Yüzü...Evaluation of Gamma Index Analysis for Detecting Errors in Patient-specific Quality Assurance in Intensity Modulated Radiotherapy Taylan Tugrul1(1.Department of Radiation Oncology,Medicine Faculty of Van YüzüncüYıl University,Van,Turkey)Abstract:Quality assurance practices performed before treatment are believed to identify various potential errors.In this study,2-dimensional(2D)dosimetric results were analyzed by making some intentional mistakes in six different treatment plans.In this way,the detectability of errors was investigated.In all segments of all treatment plans,one of the multileaf collimators was kept fixed at different positions on the central axis.In addition to multileaf collimators error,gantry error was also examined in the study.The dose distribution results obtained by Treatment Planning System(TPS)were compared with those obtained by the 2D array device,both as local calculation and global calculation methods,using the gamma analysis method.When the results are examined in the case where the Multi-leaf collimators(MLC)is fixed at the 1 cm position.展开更多
The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study pr...The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study presents a compact energy absorption structure(CE)that integrates the advantages of cutting rings and thin-walled tube modules,offering a solution with the high space utilization and the superior crashworthiness.Through theoretical modeling and experimental validation using a drop-weight test system,we analyzed the dynamic response and energy absorption characteristics of the CE.Comparative analysis with existing structures,namely the cutting shear rings(CSR)energy absorption structure and thin-walled tube structure(TW),revealed that the CE significantly improves specific energy absorption(SEA)by 102.76%and 61.54%,respectively,and optimizes crush force efficiency(CFE)by increasing 8.23%and 5.49%compared to CSR and TW.The innovative design of the CE,featuring deformation gradient and delay response strategies,showcases its potential for practical application in engineering,advancing the field of crashworthiness engineering.展开更多
Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint featur...Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint features to a data-driven technique and fur-ther reduces the adaptability of the technique to other datasets. To address this issue, the mechanism how the phase noise of high-frequency oscillators and the nonlinearity of power ampli-fiers affect the kurtosis of communication signals is investigated. Mathematical models are derived for intentional modulation (IM) and unintentional modulation (UIM). Analysis indicates that the phase noise of high-frequency oscillators and the nonlinearity of power amplifiers affect the kurtosis frequency and amplitude, respectively. A novel SEI method based on frequency and ampli-tude of the signal kurtosis (FA-SK) is further proposed. Simula-tion and real-world experiments validate theoretical analysis and also confirm the efficiency and effectiveness of the proposed method.展开更多
This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on th...This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application.展开更多
Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emi...Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.展开更多
Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature ...Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature only demonstrated the optimality of group testing strategy while estimating prevalence under some strong assumptions.This article weakens the assumption of misclassification rate in the previous literature,considers the misclassification rate of the infected samples as a differentiable function of the pool size,and explores some optimal properties of group testing for estimating prevalence in the presence of differential misclassification conforming to this assumption.This article theoretically demonstrates that the group testing strategy performs better than the sample by sample procedure in estimating disease prevalence when the total number of sample pools is given or the size of the test population is determined.Numerical simulation experiments were conducted to evaluate the performance of group tests in estimating prevalence in the presence of dilution effect.展开更多
Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research ...Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research effort aims to develop novel hybrid composites based on AA 2014 alloy through the use of liquid metallurgy stir casting to reinforce dual ceramic particles of Zirconium Diboride(ZrB_(2))and Boron Carbide(B4C).The weight percentage(wt%)of ZrB_(2) was varied(0,5,10,and 15),while a constant 5 wt%of B4C was maintained during this fabrication.The as-cast samples have been assessed using an Optical Microscope(OM)and a Scanning Electron Microscope(SEM)with Energy Dispersive Spectroscopy(EDS).The properties such as hardness,tensile strength,and wear characteristics of stir cast specimens were assessed to examine the impact of varying weight percentages of reinforcements in AA 2014 alloy.In particular,dry sliding wear behaviour was evaluated considering varied loads using a pin-on-disc tribotester.As the weight%of ZrB_(2) grew and B4C was incorporated,hybrid composites showed higher hardness,tensile strength,and wear resistance.Notably,the incorporation of a cumulative reinforcement consisting of 15 wt%ZrB_(2) and 5 wt%B4C resulted in a significant 31.86%increase in hardness and a 44.1%increase in tensile strength compared to AA 2014 alloy.In addition,it has been detected that wear resistance of hybrid composite pin(containing 20 wt%cumulative reinforcement)is higher than that of other stir cast wear test pins during the whole range of applied loads.Fractured surfaces of tensile specimens showed ductile fracture in the AA 2014 matrix and mixed mode for hybrid composites.Worn surfaces obtained employing higher applied load indicated abrasive wear with little plastic deformation for hybrid composites and dominant adhesive wear for matrix alloy.Hence,the superior mechanical and tribological performance of hybrid composites can be attributed to dual reinforcement particles being dispersed well and the effective transmission of load at this specific composition.展开更多
The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbe...The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel.展开更多
基于对新一代GPS(geometrical product specification and verification)中关键操作技术的深入分析,揭示提取与滤波、拟合之间固有的内在规律性,给出操作间参数的选用原则,为统筹优化几何误差数字化评定中的操作策略提供技术基础;最终...基于对新一代GPS(geometrical product specification and verification)中关键操作技术的深入分析,揭示提取与滤波、拟合之间固有的内在规律性,给出操作间参数的选用原则,为统筹优化几何误差数字化评定中的操作策略提供技术基础;最终通过实例验证关键操作集成化思想对几何误差评定的高效稳定性,不仅有利于实现几何误差数字化计量精度和成本的优化,而且还推进了新一代GPS标准体系关键技术的应用研究。展开更多
基金Supported by Program for New Century Excellent Talents in University(NCET-04-0283)the Funds for Creative Research Groups of China(60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT0421)the State Key Program of National Natural Science Foundation of China(60534010)and National Natural Science Foundation of China(60674021)the Funds of Ph.D.Program of Ministry of Education,China(20060145019)the 111 Project(B08015)
文摘This paper is concerned with the control synthesis problem via dynamic output feedback for linear continuous-time systems with mixed frequency small gain specifications.A new method for designing dynamic output feedback controllers is presented such that the resulting closed-loop systems are asymptotically stable and meet the requirements of small gain specifications in both finite frequency ranges and the entire frequency range.The design conditions are given in terms of solutions to a set of linear matrix inequalities(LMIs).Finally,a numerical example is given to illustrate the design procedure and the advantage of the proposed method in comparison with the existing one.
文摘Introduction The success in lineage-specific differentiation of human embryonic and induced pluripotent stem(hES/iPS)cells raises new hopes for cell-based therapies.It is envisioned that cells differentiated from hES/iPS cells can be used to replace or repair damaged or diseased cells and tissues in body.This has not yet been possible due to the difficulty in generating biologically functional cells in vitro.While many factors may contribute to these failures,the lack of tissue niches in the current differentiation systems has been viewed in impairing the maturation of these cells.As revealed by studying mice embryo development,organ development requires strict temporal and spatial control at each stage.The stepwise hESC differentiation
基金ESPRIT Basic Research ProCoS project 3104 and 7071
文摘In this paper they deal with the issue of specification and design of parallel communicatingprocesses. A trace-state based model is introduced to describe the behaviour of concurrent programs. They presenta formal system based on that model to achieve hierarchical and modular development and verification methods. Anumber of refinement rules are used to decompose the specification into smaller ones and calculate program fromthe
文摘Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.
文摘Evaluation of Gamma Index Analysis for Detecting Errors in Patient-specific Quality Assurance in Intensity Modulated Radiotherapy Taylan Tugrul1(1.Department of Radiation Oncology,Medicine Faculty of Van YüzüncüYıl University,Van,Turkey)Abstract:Quality assurance practices performed before treatment are believed to identify various potential errors.In this study,2-dimensional(2D)dosimetric results were analyzed by making some intentional mistakes in six different treatment plans.In this way,the detectability of errors was investigated.In all segments of all treatment plans,one of the multileaf collimators was kept fixed at different positions on the central axis.In addition to multileaf collimators error,gantry error was also examined in the study.The dose distribution results obtained by Treatment Planning System(TPS)were compared with those obtained by the 2D array device,both as local calculation and global calculation methods,using the gamma analysis method.When the results are examined in the case where the Multi-leaf collimators(MLC)is fixed at the 1 cm position.
基金Project(12272414)supported by the National Natural Science Foundation of ChinaProject(2023RC3045)supported by the Science and Technology Innovation Plan of Hunan Province,China。
文摘The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study presents a compact energy absorption structure(CE)that integrates the advantages of cutting rings and thin-walled tube modules,offering a solution with the high space utilization and the superior crashworthiness.Through theoretical modeling and experimental validation using a drop-weight test system,we analyzed the dynamic response and energy absorption characteristics of the CE.Comparative analysis with existing structures,namely the cutting shear rings(CSR)energy absorption structure and thin-walled tube structure(TW),revealed that the CE significantly improves specific energy absorption(SEA)by 102.76%and 61.54%,respectively,and optimizes crush force efficiency(CFE)by increasing 8.23%and 5.49%compared to CSR and TW.The innovative design of the CE,featuring deformation gradient and delay response strategies,showcases its potential for practical application in engineering,advancing the field of crashworthiness engineering.
基金supported by the Youth Science and Technology Innovation Award of National University of Defense Technology (18/19-QNCXJ)the National Science Foundation of China (62271494)
文摘Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint features to a data-driven technique and fur-ther reduces the adaptability of the technique to other datasets. To address this issue, the mechanism how the phase noise of high-frequency oscillators and the nonlinearity of power ampli-fiers affect the kurtosis of communication signals is investigated. Mathematical models are derived for intentional modulation (IM) and unintentional modulation (UIM). Analysis indicates that the phase noise of high-frequency oscillators and the nonlinearity of power amplifiers affect the kurtosis frequency and amplitude, respectively. A novel SEI method based on frequency and ampli-tude of the signal kurtosis (FA-SK) is further proposed. Simula-tion and real-world experiments validate theoretical analysis and also confirm the efficiency and effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Grant Nos.11972096,12372127 and 12202085)the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY004)+4 种基金Chongqing Natural Science Foundation(Grant No.cstc2021ycjh-bgzxm0117)China Postdoctoral Science Foundation(Grant No.2022M720562)Chongqing Postdoctoral Science Foundation(Grant No.2021XM3022)supported by the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)The opening project number is KFJJ23-18 M。
文摘This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application.
基金supported by the National Natural Science Foundation of China(62061003)Sichuan Science and Technology Program(2021YFG0192)the Research Foundation of the Civil Aviation Flight University of China(ZJ2020-04,J2020-033)。
文摘Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.
基金supported by the National Natural Science Foundation of China(Grant No.72091212).
文摘Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature only demonstrated the optimality of group testing strategy while estimating prevalence under some strong assumptions.This article weakens the assumption of misclassification rate in the previous literature,considers the misclassification rate of the infected samples as a differentiable function of the pool size,and explores some optimal properties of group testing for estimating prevalence in the presence of differential misclassification conforming to this assumption.This article theoretically demonstrates that the group testing strategy performs better than the sample by sample procedure in estimating disease prevalence when the total number of sample pools is given or the size of the test population is determined.Numerical simulation experiments were conducted to evaluate the performance of group tests in estimating prevalence in the presence of dilution effect.
文摘Considering their affordability and high strength-to-weight ratio,lightweight aluminium alloys are the subject of intensive research aimed at improving their properties for use in the aerospace industry.This research effort aims to develop novel hybrid composites based on AA 2014 alloy through the use of liquid metallurgy stir casting to reinforce dual ceramic particles of Zirconium Diboride(ZrB_(2))and Boron Carbide(B4C).The weight percentage(wt%)of ZrB_(2) was varied(0,5,10,and 15),while a constant 5 wt%of B4C was maintained during this fabrication.The as-cast samples have been assessed using an Optical Microscope(OM)and a Scanning Electron Microscope(SEM)with Energy Dispersive Spectroscopy(EDS).The properties such as hardness,tensile strength,and wear characteristics of stir cast specimens were assessed to examine the impact of varying weight percentages of reinforcements in AA 2014 alloy.In particular,dry sliding wear behaviour was evaluated considering varied loads using a pin-on-disc tribotester.As the weight%of ZrB_(2) grew and B4C was incorporated,hybrid composites showed higher hardness,tensile strength,and wear resistance.Notably,the incorporation of a cumulative reinforcement consisting of 15 wt%ZrB_(2) and 5 wt%B4C resulted in a significant 31.86%increase in hardness and a 44.1%increase in tensile strength compared to AA 2014 alloy.In addition,it has been detected that wear resistance of hybrid composite pin(containing 20 wt%cumulative reinforcement)is higher than that of other stir cast wear test pins during the whole range of applied loads.Fractured surfaces of tensile specimens showed ductile fracture in the AA 2014 matrix and mixed mode for hybrid composites.Worn surfaces obtained employing higher applied load indicated abrasive wear with little plastic deformation for hybrid composites and dominant adhesive wear for matrix alloy.Hence,the superior mechanical and tribological performance of hybrid composites can be attributed to dual reinforcement particles being dispersed well and the effective transmission of load at this specific composition.
基金Bundeswehr Technical Center for Weapons and Ammunition WTD-91 GF-440 in Meppen,Germany for funding this work。
文摘The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel.
文摘基于对新一代GPS(geometrical product specification and verification)中关键操作技术的深入分析,揭示提取与滤波、拟合之间固有的内在规律性,给出操作间参数的选用原则,为统筹优化几何误差数字化评定中的操作策略提供技术基础;最终通过实例验证关键操作集成化思想对几何误差评定的高效稳定性,不仅有利于实现几何误差数字化计量精度和成本的优化,而且还推进了新一代GPS标准体系关键技术的应用研究。