Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac...Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).展开更多
An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential...An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential,as the loss of cached data requires access to data from external storage,which evidently increases the response latency.Typically,replication and erasure code(EC)are two fault-tolerant schemes that pose different trade-offs between access performance and storage usage.To help make the best performance and space trade-off,we design ElasticMem,a hybrid fault-tolerant distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant scheme.ElasticMem exploits a novel EC-oriented replication(EOR)that carefully designs the data placement of replication according to the future data layout of EC to enhance the I/O efficiency of redundancy transition.ElasticMem solves the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data bypassing.It detects correlated read and write requests and serves subsequent read requests with local data.We implement a prototype that realizes ElasticMem based on Memcached.Experiments show that ElasticMem remarkably reduces the time of redundancy transition,the overall latency of correlated concurrent data accesses,and the latency of single data access among them.展开更多
Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,inclu...Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications.展开更多
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat...Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.展开更多
Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the...Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.展开更多
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur...The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.展开更多
Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity ar...Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.展开更多
Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the...Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics.Herein,based on the high specific surface area and abundant surface functional groups of carbon dots(CDs),sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method.After the thermal conversion of the precursors,a composite material(NNTO/C)of Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)was obtained,containing conductive carbon derived from CDs.The introduc⁃tion of conductive carbon not only adjusts the composition ratio of the mixed phases,but also provides a small charge transfer impedance(Rct,7.48Ω)and a big specific surface area(100.8 m^(2)/g).As a result,NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases.When employed as the anode,after 200 cycles at 0.05 A/g,NNTO/C still maintains a specific capacity of 143.8 mA‧h/g.After 400 cycles at 1.00 A/g,the specific capacity remains as high as 108 mA‧h/g.This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage.展开更多
Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromat...Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization.展开更多
Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this wo...Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.展开更多
In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the...In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes.展开更多
Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning p...Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.展开更多
During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent...During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent pumping,water storage and other dynamic disturbances.The stability of the abandoned mine surrounding rock body is the basis for guaranteeing the safety and effectiveness of water storage in the underground space of the abandoned mine.By considering the two main factors of different stress levels and disturbance amplitudes,the mechanical properties,damage characteristics and acoustic emission characteristics of the abandoned mine perimeter rock body under dynamic disturbance were investigated using a creep-disturbed dynamic impact loading system.The experimental results show that:1)The stress level is considered to be the major contributing factor of the failure of muddy sandstone,followed by the amplitude of the disturbances;2)The time required for the destruction of muddy sandstone decreases with the increase of amplitude.When the stress level is 80%,the sandstone specimens have a decreasing number of cycles as the disturbance amplitude increases.The disturbance amplitude is sequentially increased from 4 MPa to 5,6,7,and 8 MPa,the number of cycles required for specimen destruction decreases significantly by 96.71%,99.13%,99.60%,and 99.93%,respectively;3)Disturbance amplitude and stress level have a significant effect on muddy sandstone damage and damage occurs only after a certain threshold is reached.With the increase of stress level and disturbance amplitude,the macroscopic damage of muddy sandstone is mainly conical,with obvious flake spalling and poor damage integrity;4)According to the time-dependent changes in AE energy and ringing counts,the acoustic emission activity during the failure process could be divided into three phases,namely,weakening period,smooth period,and surge period,corresponding to the compaction phase,elastic rise phase and post-peak damage phase.The research results are of reference significance for the damage evolution analysis of muddy sandstone under dynamic disturbance and the safety and stability of abandoned mine perimeter rock body.展开更多
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio...Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.展开更多
This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃sp...This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.展开更多
In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and...In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics.展开更多
2024年11月29日—12月1日广东·广州中国计算机学会中国存储大会(CCF China Storage Conference,简称CCF ChinaStorage)是我国一年一度信息计算与存储领域学术界和产业界联合举办的大型年度盛会。本届会议将于2024年11月29日—12月...2024年11月29日—12月1日广东·广州中国计算机学会中国存储大会(CCF China Storage Conference,简称CCF ChinaStorage)是我国一年一度信息计算与存储领域学术界和产业界联合举办的大型年度盛会。本届会议将于2024年11月29日—12月1日在广东省广州市长隆国际会展中心召开。展开更多
文摘Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).
基金supported by the Fundamental Research Funds for the Central Universities(WK2150110022)Anhui Provincial Natural Science Foundation(2208085QF189)National Natural Science Foundation of China(62202440).
文摘An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential,as the loss of cached data requires access to data from external storage,which evidently increases the response latency.Typically,replication and erasure code(EC)are two fault-tolerant schemes that pose different trade-offs between access performance and storage usage.To help make the best performance and space trade-off,we design ElasticMem,a hybrid fault-tolerant distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant scheme.ElasticMem exploits a novel EC-oriented replication(EOR)that carefully designs the data placement of replication according to the future data layout of EC to enhance the I/O efficiency of redundancy transition.ElasticMem solves the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data bypassing.It detects correlated read and write requests and serves subsequent read requests with local data.We implement a prototype that realizes ElasticMem based on Memcached.Experiments show that ElasticMem remarkably reduces the time of redundancy transition,the overall latency of correlated concurrent data accesses,and the latency of single data access among them.
基金supported by National Natural Science Foundation of China(52272039,U23B2075,51972168)Key Research and Development Program in Jiangsu Province(BE2023085)Natural Science Foundation of Jiangsu Province of China(BK20231406)。
文摘Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications.
文摘Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.
文摘Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.
文摘The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
基金西南大学中央高校基本科研业务费项目(SWU-KT22030)重庆市教育委员会科学技术研究项目(KJQN202300205)Deutsche Forschungsgemeinschaft(DFG,German Research Foundation,457444676).
文摘Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.
文摘Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)are two typical titanate-based sodium-storage materials,featuring the high theoretical capacity and favorable structure stability,respectively.Regulating the ratio of them in the composite material is the key to strengthen its electrochemical characteristics.Herein,based on the high specific surface area and abundant surface functional groups of carbon dots(CDs),sodium titanate precursors containing CDs were in situ prepared by one-step hydrothermal method.After the thermal conversion of the precursors,a composite material(NNTO/C)of Na_(2)Ti_(3)O_(7)and Na_(2)Ti_(6)O_(13)was obtained,containing conductive carbon derived from CDs.The introduc⁃tion of conductive carbon not only adjusts the composition ratio of the mixed phases,but also provides a small charge transfer impedance(Rct,7.48Ω)and a big specific surface area(100.8 m^(2)/g).As a result,NNTO/C composites exhibit better sodium storage behavior while playing the synergistic interaction of mixed phases.When employed as the anode,after 200 cycles at 0.05 A/g,NNTO/C still maintains a specific capacity of 143.8 mA‧h/g.After 400 cycles at 1.00 A/g,the specific capacity remains as high as 108 mA‧h/g.This study suggests an innovative thinking for designing two-phase structures of electrode materials and the greater use of CDs in electrochemical energy storage.
文摘Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization.
基金Project(8212033)supported by the Natural Science Foundation of Beijing,ChinaProject(BBJ2023051)supported by the Fundamental Research Funds of China University of Mining and Technology-BeijingProject(SKLGDUEK202221)supported by the Innovation Fund Research Project,China。
文摘Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.
基金supported by National Natural Science Foundation of China Innovation Group (Grant No.12221002)Beijing Natural Science Foundation (Grant No.L212018)。
文摘In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes.
基金Project(202208340045)supported by the China Scholarship Council FundProject(U21A20110)supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China+1 种基金Project(EUCMR202201)supported by the Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources,ChinaProject(2023cxcyzx063)supported by the Anhui Province New Era Talent Education Project,China。
文摘Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.
基金Project(52204101)supported by the National Natural Science Foundation of ChinaProject(ZR2022QE137)supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLGDUEK2023)supported by the Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in China University of Mining&Technology,Beijing,China。
文摘During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent pumping,water storage and other dynamic disturbances.The stability of the abandoned mine surrounding rock body is the basis for guaranteeing the safety and effectiveness of water storage in the underground space of the abandoned mine.By considering the two main factors of different stress levels and disturbance amplitudes,the mechanical properties,damage characteristics and acoustic emission characteristics of the abandoned mine perimeter rock body under dynamic disturbance were investigated using a creep-disturbed dynamic impact loading system.The experimental results show that:1)The stress level is considered to be the major contributing factor of the failure of muddy sandstone,followed by the amplitude of the disturbances;2)The time required for the destruction of muddy sandstone decreases with the increase of amplitude.When the stress level is 80%,the sandstone specimens have a decreasing number of cycles as the disturbance amplitude increases.The disturbance amplitude is sequentially increased from 4 MPa to 5,6,7,and 8 MPa,the number of cycles required for specimen destruction decreases significantly by 96.71%,99.13%,99.60%,and 99.93%,respectively;3)Disturbance amplitude and stress level have a significant effect on muddy sandstone damage and damage occurs only after a certain threshold is reached.With the increase of stress level and disturbance amplitude,the macroscopic damage of muddy sandstone is mainly conical,with obvious flake spalling and poor damage integrity;4)According to the time-dependent changes in AE energy and ringing counts,the acoustic emission activity during the failure process could be divided into three phases,namely,weakening period,smooth period,and surge period,corresponding to the compaction phase,elastic rise phase and post-peak damage phase.The research results are of reference significance for the damage evolution analysis of muddy sandstone under dynamic disturbance and the safety and stability of abandoned mine perimeter rock body.
文摘Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.
文摘This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.
文摘In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics.
文摘2024年11月29日—12月1日广东·广州中国计算机学会中国存储大会(CCF China Storage Conference,简称CCF ChinaStorage)是我国一年一度信息计算与存储领域学术界和产业界联合举办的大型年度盛会。本届会议将于2024年11月29日—12月1日在广东省广州市长隆国际会展中心召开。