Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir...Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr...Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.展开更多
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o...Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.展开更多
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ...Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.展开更多
The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a...The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed.展开更多
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随...在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。展开更多
With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl...High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biom...The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biomedical challenges.Nanomaterials possess distinctive structures and properties.Through the exploration of the fabrication of emerging nanomedicines,multiple functions can be integrated to enable more precise diagnosis and treatment,thereby compensating for the limitations of traditional treatment modalities.Among various substances,polyphenols are natural organic compounds classified as plant secondary metabolites and are ubiquitously present in vegetables,teas,and other plants.Polyphenols are rich in active groups,including hydroxyl,carboxyl,amino,and conjugated double bonds.They exhibit robust adhesion,antioxidant,anti-inflammatory,and antibacterial biological activities and are extensively applied in pharmaceutical formulations.Additionally,polyphenols are characterized by their low cost,ready availability,and do not necessitate intricate chemical synthesis processes.Nevertheless,when natural polyphenol-based nanomedicines are utilized in isolation,they encounter several issues.These include poor water solubility,feeble stability,low bioavailability,the requirement for high dosages,and difficulties in precisely reaching the site of action.To address these concerns,researchers have developed nanomedicines by combining metal ions and functional ligands through metal coordination strategies.Nanomaterials,owing to their unique electronic and optical properties,have been successfully introduced into the realm of medical biology.Nano preparations not only enhance the stability of natural products but also endow them with targeting capabilities,thus enabling precise drug delivery.Polyphenols can further synergize with metal ions,anti-cancer drugs,or photosensitizers via supramolecular interactions to achieve multifunctional synergistic therapies,such as targeted drug delivery,efficacy enhancement,and the construction of engineering scaffolds.Metal-Polyphenol Coordination Polymers(MPCPs),composed of metal ions and phenolic ligands,are regarded as ideal nanoplatforms for disease diagnosis and treatment.In recent years,MPCPs have attracted extensive research in the biomedical field on account of their advantages,including facile synthesis,adjustable structure,excellent biocompatibility,and pH responsiveness.In this review,the classification and preparation strategies of MPCPs were systematically presented.Subsequently,their remarkable achievements in biomedical domains,such as bioimaging,biosensing,drug delivery,tumor therapy,and antimicrobial applications were highlighted.Finally,the principal limitations and prospects of MPCPs were comprehensi vely discussed.展开更多
Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first ...Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia.Traditionally recognized for its diuretic,spleen-tonifying,and sedative properties,modern pharmacological studies confirm that Poria exhibits antioxidant,anti-inflammatory,antibacterial,and antitumor activities.Pachymic acid(PA;a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid),isolated from Poria,is a principal bioactive constituent.Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms,though these remain incompletely characterized.Neuroblastoma(NB),a highly malignant pediatric extracranial solid tumor accounting for 15%of childhood cancer deaths,urgently requires safer therapeutics due to the limitations of current treatments.Although PA shows multi-mechanistic antitumor potential,its efficacy against NB remains uncharacterized.This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking,dynamic simulations,and in vitro assays,aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays.Methods This study employed network pharmacology to identify potential targets of PA in NB,followed by validation using molecular docking,molecular dynamics(MD)simulations,MM/PBSA free energy analysis,RT-qPCR and Western blot experiments.Network pharmacology analysis included target screening via TCMSP,GeneCards,DisGeNET,SwissTargetPrediction,SuperPred,and PharmMapper.Subsequently,potential targets were predicted by intersecting the results from these databases via Venn analysis.Following target prediction,topological analysis was performed to identify key targets using Cytoscape software.Molecular docking was conducted using AutoDock Vina,with the binding pocket defined based on crystal structures.MD simulations were performed for 100 ns using GROMACS,and RMSD,RMSF,SASA,and hydrogen bonding dynamics were analyzed.MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex.In vitro validation included RT-qPCR and Western blot,with GAPDH used as an internal control.Results The CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability.GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress,vesicle lumen,and protein tyrosine kinase activity.KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT,MAPK,and Ras signaling pathways.Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1,EGFR,SRC,and HSP90AA1.RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1,EGFR,and SRC while increasing the HSP90AA1 mRNA and protein levels.Conclusion It was suggested that PA may exert its anti-NB effects by inhibiting AKT1,EGFR,and SRC expression,potentially modulating the PI3K/AKT signaling pathway.These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.展开更多
Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,inclu...Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications.展开更多
Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and hea...Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and healthy individuals using bioinformatics approaches,and to verify the function of key transcription factors,with the goal of providing new insights into the pathogenesis of PCOS.Methods:Differentially expressed genes(DEGs)and differentially expressed transcription factors(DETFs)between PCOS patients and controls were identified from the RNA sequencing dataset GSE168404 using bioinformatics methods.Functional enrichment analysis was performed using Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)databases.The expression and function of core transcription factors were further validated in ovarian tissues of PCOS model mice and control mice using Western blotting and reverse transcription quantitative polymerase chain reaction(RTqPCR).Results:A total of 332 DEGs were identified between PCOS patients and controls,including 259 upregulated and 73 downregulated genes in the PCOS group.19 DETFs were further screened,of which 16 were upregulated and 3 were downregulated in PCOS.The upregulated DETFs(including TFCP2L1,DACH1,ESR2,AFF3,SMAD9,ZNF331,HOPX,ATOH8,HIF3α,DPF3,HOXC4,HES1,ID1,JDP2,SOX4,and ID3)were primarily associated with lipid metabolism,development,and cell adhesion.Protein and mRNA expression analysis in PCOS model mice revealed significantly decreased levels of hypoxia-inducible factor(HIF)1αand HIF2α,and significantly increased expression of HIF3αcompared to control mice(all P<0.001).Conclusion:Significant differences in gene and TF expression exist between PCOS patients and healthy individuals.HIF-3αmay play a crucial role in PCOS and could serve as a novel biomarker for diagnosis and a potential therapeutic target.展开更多
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
文摘Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金supported by the National Natural Science Foundation of China (Grant Nos. 22475179 and 22275173)。
文摘Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.
文摘Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.
基金the National Natural Science Foundation of China (Grants No. 12072090 and No.12302056) to provide fund for conducting experiments。
文摘Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.
文摘The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed.
文摘在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.
基金National Natural Science Foundation of China(1180500311947102+4 种基金12004005)Natural Science Foundation of Anhui Province(2008085MA162008085QA26)University Synergy Innovation Program of Anhui Province(GXXT-2022-039)State Key Laboratory of Advanced Electromagnetic Technology(Grant No.AET 2024KF006)。
文摘High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
文摘The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biomedical challenges.Nanomaterials possess distinctive structures and properties.Through the exploration of the fabrication of emerging nanomedicines,multiple functions can be integrated to enable more precise diagnosis and treatment,thereby compensating for the limitations of traditional treatment modalities.Among various substances,polyphenols are natural organic compounds classified as plant secondary metabolites and are ubiquitously present in vegetables,teas,and other plants.Polyphenols are rich in active groups,including hydroxyl,carboxyl,amino,and conjugated double bonds.They exhibit robust adhesion,antioxidant,anti-inflammatory,and antibacterial biological activities and are extensively applied in pharmaceutical formulations.Additionally,polyphenols are characterized by their low cost,ready availability,and do not necessitate intricate chemical synthesis processes.Nevertheless,when natural polyphenol-based nanomedicines are utilized in isolation,they encounter several issues.These include poor water solubility,feeble stability,low bioavailability,the requirement for high dosages,and difficulties in precisely reaching the site of action.To address these concerns,researchers have developed nanomedicines by combining metal ions and functional ligands through metal coordination strategies.Nanomaterials,owing to their unique electronic and optical properties,have been successfully introduced into the realm of medical biology.Nano preparations not only enhance the stability of natural products but also endow them with targeting capabilities,thus enabling precise drug delivery.Polyphenols can further synergize with metal ions,anti-cancer drugs,or photosensitizers via supramolecular interactions to achieve multifunctional synergistic therapies,such as targeted drug delivery,efficacy enhancement,and the construction of engineering scaffolds.Metal-Polyphenol Coordination Polymers(MPCPs),composed of metal ions and phenolic ligands,are regarded as ideal nanoplatforms for disease diagnosis and treatment.In recent years,MPCPs have attracted extensive research in the biomedical field on account of their advantages,including facile synthesis,adjustable structure,excellent biocompatibility,and pH responsiveness.In this review,the classification and preparation strategies of MPCPs were systematically presented.Subsequently,their remarkable achievements in biomedical domains,such as bioimaging,biosensing,drug delivery,tumor therapy,and antimicrobial applications were highlighted.Finally,the principal limitations and prospects of MPCPs were comprehensi vely discussed.
文摘Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia.Traditionally recognized for its diuretic,spleen-tonifying,and sedative properties,modern pharmacological studies confirm that Poria exhibits antioxidant,anti-inflammatory,antibacterial,and antitumor activities.Pachymic acid(PA;a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid),isolated from Poria,is a principal bioactive constituent.Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms,though these remain incompletely characterized.Neuroblastoma(NB),a highly malignant pediatric extracranial solid tumor accounting for 15%of childhood cancer deaths,urgently requires safer therapeutics due to the limitations of current treatments.Although PA shows multi-mechanistic antitumor potential,its efficacy against NB remains uncharacterized.This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking,dynamic simulations,and in vitro assays,aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays.Methods This study employed network pharmacology to identify potential targets of PA in NB,followed by validation using molecular docking,molecular dynamics(MD)simulations,MM/PBSA free energy analysis,RT-qPCR and Western blot experiments.Network pharmacology analysis included target screening via TCMSP,GeneCards,DisGeNET,SwissTargetPrediction,SuperPred,and PharmMapper.Subsequently,potential targets were predicted by intersecting the results from these databases via Venn analysis.Following target prediction,topological analysis was performed to identify key targets using Cytoscape software.Molecular docking was conducted using AutoDock Vina,with the binding pocket defined based on crystal structures.MD simulations were performed for 100 ns using GROMACS,and RMSD,RMSF,SASA,and hydrogen bonding dynamics were analyzed.MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex.In vitro validation included RT-qPCR and Western blot,with GAPDH used as an internal control.Results The CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability.GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress,vesicle lumen,and protein tyrosine kinase activity.KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT,MAPK,and Ras signaling pathways.Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1,EGFR,SRC,and HSP90AA1.RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1,EGFR,and SRC while increasing the HSP90AA1 mRNA and protein levels.Conclusion It was suggested that PA may exert its anti-NB effects by inhibiting AKT1,EGFR,and SRC expression,potentially modulating the PI3K/AKT signaling pathway.These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
基金supported by National Natural Science Foundation of China(52272039,U23B2075,51972168)Key Research and Development Program in Jiangsu Province(BE2023085)Natural Science Foundation of Jiangsu Province of China(BK20231406)。
文摘Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications.
基金supported by the Natural Science Foundation of Hunan Province,China(2022JJ30886).
文摘Objective:Polycystic ovary syndrome(PCOS)is a common endocrine disorder that affects women’s health.This study aims to investigate gene and transcription factor(TF)expression differences between PCOS patients and healthy individuals using bioinformatics approaches,and to verify the function of key transcription factors,with the goal of providing new insights into the pathogenesis of PCOS.Methods:Differentially expressed genes(DEGs)and differentially expressed transcription factors(DETFs)between PCOS patients and controls were identified from the RNA sequencing dataset GSE168404 using bioinformatics methods.Functional enrichment analysis was performed using Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)databases.The expression and function of core transcription factors were further validated in ovarian tissues of PCOS model mice and control mice using Western blotting and reverse transcription quantitative polymerase chain reaction(RTqPCR).Results:A total of 332 DEGs were identified between PCOS patients and controls,including 259 upregulated and 73 downregulated genes in the PCOS group.19 DETFs were further screened,of which 16 were upregulated and 3 were downregulated in PCOS.The upregulated DETFs(including TFCP2L1,DACH1,ESR2,AFF3,SMAD9,ZNF331,HOPX,ATOH8,HIF3α,DPF3,HOXC4,HES1,ID1,JDP2,SOX4,and ID3)were primarily associated with lipid metabolism,development,and cell adhesion.Protein and mRNA expression analysis in PCOS model mice revealed significantly decreased levels of hypoxia-inducible factor(HIF)1αand HIF2α,and significantly increased expression of HIF3αcompared to control mice(all P<0.001).Conclusion:Significant differences in gene and TF expression exist between PCOS patients and healthy individuals.HIF-3αmay play a crucial role in PCOS and could serve as a novel biomarker for diagnosis and a potential therapeutic target.
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.