期刊文献+
共找到65,195篇文章
< 1 2 250 >
每页显示 20 50 100
基于NeuralProphet组合模型的云计算资源负载预测
1
作者 李好 谢晓兰 郭强 《现代电子技术》 北大核心 2025年第22期145-152,共8页
云计算的快速发展使得服务器面临的负载压力逐渐增加,如何精准预测负载资源成为云中心资源分配与服务器安全运行的重要课题。现有的单一模型在捕捉全局特征方面存在不足,而组合模型在处理时序数据时的平稳性和解释性方面有所欠缺。因此... 云计算的快速发展使得服务器面临的负载压力逐渐增加,如何精准预测负载资源成为云中心资源分配与服务器安全运行的重要课题。现有的单一模型在捕捉全局特征方面存在不足,而组合模型在处理时序数据时的平稳性和解释性方面有所欠缺。因此,提出一种基于NeuralProphet分解的卷积神经网络(CNN)-长短期记忆(LSTM)网络-注意力(Attention)机制的组合模型。NeuralProphet将负载数据分解为趋势、季节和自回归项分量,增强数据的平稳性和解释性,从而使模型能更高效地捕捉全局特征和长期依赖关系;并通过注意力机制动态权重分配,聚焦影响预测结果的关键特征,进一步提高对未来时刻的预测精度。在Alibaba Cluster Data V2018数据集上的实验结果表明,所提出的组合模型在预测精度和性能方面优于其他深度学习模型。与单一模型NeuralProphet及CNN-BiLSTM组合模型相比,该模型在R2评分上提高了17.9%,均方根误差(RMSE)降低了73.6%,平均绝对误差(MAE)降低了69.7%,对称平均绝对百分比误差(sMAPE)降低了65.3%,具备更高的预测准确性和鲁棒性,有助于提高云资源利用效率。 展开更多
关键词 云计算 资源负载预测 neuralProphet模型 卷积神经网络 长短期记忆网络 注意力机制 组合模型
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
2
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Catalpol Promotes Differentiation of Neural Stem Cells into Oligodendrocyte via Caveolin-1-dependent Pathway in The 3D Microfluidic Chip
3
作者 WANG Ya-Chen WANG Liang +1 位作者 SHEN Li-Ming LIU Jing 《生物化学与生物物理进展》 北大核心 2025年第11期2842-2853,共12页
Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characteri... Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation. 展开更多
关键词 CATALPOL neural stem cells OLIGODENDROCYTES DIFFERENTIATION CAVEOLIN-1 microfluidic chip
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
4
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network
5
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method neural network CEL method CONWEP model
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
6
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
7
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
8
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
基于LSTM-NeuralProphet模型的城市需水预测方法研究 被引量:5
9
作者 范怡静 刘真 +1 位作者 苑佳 刘心 《中国农村水利水电》 北大核心 2023年第9期35-45,53,共12页
城市水资源规划和管理是确保城市可持续发展和居民生活基本需求得到满足的关键环节,城市短期需水预测是城市水资源规划和管理的基础。由于气温、降水量和蒸发量等随季节变化明显,直接影响不同季节的用水峰值、高峰期,导致传统基于时间... 城市水资源规划和管理是确保城市可持续发展和居民生活基本需求得到满足的关键环节,城市短期需水预测是城市水资源规划和管理的基础。由于气温、降水量和蒸发量等随季节变化明显,直接影响不同季节的用水峰值、高峰期,导致传统基于时间序列算法的固定时隙预测无法适应时隙的变化,从而不能保证预测精度。针对固定时隙预测精度低的问题,研究了基于四季24 h时间分辨率和夏季15 min时间分辨率的双时间尺度城市短期需水预测模型。该模型使用Anomaly-Transformer模型进行异常值检测,并通过分段曲线拟合对异常值校正,采用主成分分析法对城市短期需水影响因子进行分析提取主成分,在AutoML的标准模型分析中选取三个效果最好的模型作为Stacking模型的基学习器再结合长短期记忆网络(Long Short-Term Memory,LSTM)和Optune框架超参数优化后的NeuralProphet模型对双时间尺度的城市短期需水量进行预测,同时加入安全网机制,以保证LSTM-NeuralProphet模型的精确度。与其他模型(LSTM模型、NeuralProphet模型、BP神经网络模型)相比,LSTM-NeuralProphet模型的平均绝对误差在四季24 h时间分辨率的数据集上降低了0.18%~1.96%,在夏季15 min时间分辨率的数据集上降低了0.45%~11.90%。实验结果表明,LSTM-NeuralProphet模型具有更好的拟合效果和更高的预测精度,能较准确地预测双时间尺度下的城市需水量,可以较好地应用于城市短期需水预测研究中。 展开更多
关键词 双时间尺度 城市需水预测 长短期记忆网络 neuralProphet模型 LSTM-neuralProphet模型
在线阅读 下载PDF
基于小波包变换和Replicator Neural Network的单位置结构损伤检测 被引量:1
10
作者 张祥 陈仁文 《机械强度》 CAS CSCD 北大核心 2020年第3期509-515,共7页
为了实现对结构的损伤检测,提出一种基于小波包变换和Replicator Neural Network(RNN)的单位置结构损伤检测方法。首先采用小波包变换对原始振动响应信号进行分解,计算分解得到的各频带的相对频带能量,这些相对频带能量的分布反映了结... 为了实现对结构的损伤检测,提出一种基于小波包变换和Replicator Neural Network(RNN)的单位置结构损伤检测方法。首先采用小波包变换对原始振动响应信号进行分解,计算分解得到的各频带的相对频带能量,这些相对频带能量的分布反映了结构特性。然后,将健康结构的相对频带能量作为输入训练RNN。最后,利用训练后的网络即可对结构进行实时损伤检测。实验表明,即使在有噪声干扰下,该方法仍然能够检测出结构是否存在损伤。 展开更多
关键词 Replicator neural Network 小波包变换 相对频带能量 结构损伤检测
在线阅读 下载PDF
用Matlab中的Neural Network Toolbox仿真赤道东太平洋SST的预报模型 被引量:3
11
作者 张韧 蒋国荣 李妍 《海洋科学》 CAS CSCD 北大核心 2001年第2期38-42,共5页
基于NCEP/NCAR再分析资料和COADS海洋资料中的全球月平均海平面气压场、850hPa纬向风场及海表温度场 ,利用Matlab中的NeuralNetworkToolbox仿真环境和BP模型改进算法比较准确地仿真和反演出了南方涛动指数、赤道纬向风指数和滞后的赤道... 基于NCEP/NCAR再分析资料和COADS海洋资料中的全球月平均海平面气压场、850hPa纬向风场及海表温度场 ,利用Matlab中的NeuralNetworkToolbox仿真环境和BP模型改进算法比较准确地仿真和反演出了南方涛动指数、赤道纬向风指数和滞后的赤道东太平洋海温之间的动力结构和预报模型。该模型具有很好的拟合精度和可行的预报效果 ,可在一定时效内预测赤道东太平洋月平均海温的变化趋势。由于所建系统是具有直接因果关系的预报模型 ,因此不仅可直接用于预测 。 展开更多
关键词 neuralNETWORK 系统仿真反演 赤道东太平洋SST模
在线阅读 下载PDF
一种改进Neural-Gas算法的聚类新算法CARD 被引量:1
12
作者 朱烨行 李艳玲 杨献文 《计算机应用研究》 CSCD 北大核心 2015年第5期1309-1312,共4页
针对现有的Neural-Gas算法进行改进,提出了一种新的聚类算法。改进之处在于:一个点对一个簇的质心的影响程度取决于该点到其他更近的簇的质心的距离值,而不仅仅是点与簇质心间距离值按大小排列次序的序号。在几个数据集上的实验结果表明... 针对现有的Neural-Gas算法进行改进,提出了一种新的聚类算法。改进之处在于:一个点对一个簇的质心的影响程度取决于该点到其他更近的簇的质心的距离值,而不仅仅是点与簇质心间距离值按大小排列次序的序号。在几个数据集上的实验结果表明,该算法在熵、纯度、F1值、rand index、规范化互信息NMI等五个指标上优于K-means算法、Neural-Gas算法等其他几种聚类算法,该算法是一种较好较快的算法。 展开更多
关键词 neural-Gas算法 聚类算法 距离值 排序
在线阅读 下载PDF
Neural Network inverse Adaptive Controller Based on Davidon Least Square 被引量:2
13
作者 Chen, Zengqiang Lu, Zhao Yuan, Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期47-52,共6页
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu... General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme. 展开更多
关键词 ALGORITHMS Backpropagation Convergence of numerical methods Feedforward neural networks Inverse problems Least squares approximations Mathematical models Multilayer neural networks
在线阅读 下载PDF
混合Neural-Gas网络和Sammon映射的数据可视化算法 被引量:1
14
作者 晋良念 欧阳缮 《电子与信息学报》 EI CSCD 北大核心 2008年第5期1118-1121,共4页
与SOFM,最大熵聚类,K均值聚类相比,"Neural-Gas"网络算法具有收敛速度快、代价误差小等优点。但"Neural-Gas"网络用于非均匀分布的线性或非线性数据集进行降维或可视化时,输出空间上固定有序的神经元表现出极不理... 与SOFM,最大熵聚类,K均值聚类相比,"Neural-Gas"网络算法具有收敛速度快、代价误差小等优点。但"Neural-Gas"网络用于非均匀分布的线性或非线性数据集进行降维或可视化时,输出空间上固定有序的神经元表现出极不理想的距离信息。为此,该文根据归一化概率自组织特征映射的基本思想,提出混合"Neural-Gas"网络和Sammon映射的新方法来解决此问题,通过"Neural-Gas"网络算法进行特征聚类以降低计算复杂度,通过Sammon映射保持输入空间和输出空间上神经元间的距离相似性。仿真结果表明,该混合算法对合成数据集或现实数据集的可视化能够取得较理想的效果,从而验证了该混合算法的可行性和有效性。 展开更多
关键词 neural-Gas网络 Sammon映射 混合算法 距离相似性
在线阅读 下载PDF
Exponential stability for cellular neural networks: an LMI approach 被引量:1
15
作者 Liu Deyou Zhang Jianhua Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期68-71,共4页
A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasov... A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasovskii function enables the derivation of new results for an exponential stability of the equilibrium point for DCNNs. The results establish a relation between the delay time and the parameters of the network. The results are also compared with one of the most recent results derived in the literature. 展开更多
关键词 Delayed cellular neural networks LMI neural networks Exponential stability
在线阅读 下载PDF
Tracking maneuvering target based on neural fuzzy network with incremental neural leaning 被引量:1
16
作者 Liu Mei Quan Taifan Yao Tianbin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期343-349,共7页
The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the m... The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the maneuver value accurately , then the tracking filter can be compensated correctly and duly by the estimated maneuver value. When environment changes, neural fuzzy network with incremental neural learning (INL-SONFIN) can find its optimal structure and parameters automatically to adopt to changed environment. So, it always produce estimated output very close to the true maneuver value that leads to good tracking performance and avoids misstracking. Simulation results show that the performance is superior to the traditional schemes and the scheme can fit changed dynamic environment to track maneuvering target accurately and duly. 展开更多
关键词 neural fuzzy network incremental neural learning maneuvering target tracking.
在线阅读 下载PDF
Neural network modeling and control of proton exchange membrane fuel cell 被引量:1
17
作者 陈跃华 曹广益 朱新坚 《Journal of Central South University of Technology》 EI 2007年第1期84-87,共4页
A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trai... A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trained by the input-output data of impedance. A fuzzy neural network controller was designed to control the impedance response. The RBF neural network model was used to test the fuzzy neural network controller. The results show that the RBF model output can imitate actual output well, the maximal error is not beyond 20 m-, the training time is about 1 s by using 20 neurons, and the mean squared errors is 141.9 m-2. The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is about 3 min. 展开更多
关键词 proton exchange membrane fuel cell radial basis function neural network fuzzy neural network
在线阅读 下载PDF
Neural Nets:Another Paradigm for Decision Support
18
作者 Feng Shan (Dept. of ACE, Huazhong University of Science and Technology, Wuhan 430074, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期2-8,共7页
The paper presents an important aspect of Neural Nets application, i. e., their usefulness for decision support. The essential feature of the neural net approach to decision making is that it is a black-box approach, ... The paper presents an important aspect of Neural Nets application, i. e., their usefulness for decision support. The essential feature of the neural net approach to decision making is that it is a black-box approach, which means one does not try to model the underlying processes, but only looks for a tuning of the parameters of the neural net such that the black-box mimics the sensible behavior. Through the existing widespread applications in industry, business and science, the paper emphasizes their common property as a paradigm for decision support. 展开更多
关键词 neural network neural-net controller Decision support Industrial applications.
在线阅读 下载PDF
Identification of Typical Rice Diseases Based on Interleaved Attention Neural Network
19
作者 Wen Xin Jia Yin-jiang Su Zhong-bin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第4期87-96,共10页
Taking Jiuhong Modern Agriculture Demonstration Park of Heilongjiang Province as the base for rice disease image acquisition,a total of 841 images of the four different diseases,including rice blast,stripe leaf blight... Taking Jiuhong Modern Agriculture Demonstration Park of Heilongjiang Province as the base for rice disease image acquisition,a total of 841 images of the four different diseases,including rice blast,stripe leaf blight,red blight and bacterial brown spot,were obtained.In this study,an interleaved attention neural network(IANN)was proposed to realize the recognition of rice disease images and an interleaved group convolutions(IGC)network was introduced to reduce the number of convolutional parameters,which realized the information interaction between channels.Based on the convolutional block attention module(CBAM),attention was paid to the features of results of the primary group convolution in the cross-group convolution to improve the classification performance of the deep learning model.The results showed that the classification accuracy of IANN was 96.14%,which was 4.72%higher than that of the classical convolutional neural network(CNN).This study showed a new idea for the efficient training of neural networks in the case of small samples and provided a reference for the image recognition and diagnosis of rice and other crop diseases. 展开更多
关键词 disease identification convolutional neural network interleaved attention neural network
在线阅读 下载PDF
Notch信号通路与Neuralized蛋白 被引量:1
20
作者 郭政 黄瑾 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2008年第11期987-991,共5页
Notch信号通路在脊椎动物和无脊椎动物许多组织的发育过程和细胞间通讯中都发挥了关键的作用,包括调控细胞命运,调节细胞迁移,分化和增殖.Notch信号通路由Notch受体及其跨膜配体如Delta(Dl)和Serrate组成.Neuralized蛋白(Neur)编码1个E... Notch信号通路在脊椎动物和无脊椎动物许多组织的发育过程和细胞间通讯中都发挥了关键的作用,包括调控细胞命运,调节细胞迁移,分化和增殖.Notch信号通路由Notch受体及其跨膜配体如Delta(Dl)和Serrate组成.Neuralized蛋白(Neur)编码1个E3泛素连接酶,是Notch配体D1内吞所必需的.Neur蛋白包括3个从线虫到人高度保守的结构域:2个Neur同源重复结构域(NHR1和NHR2)和1个C端RING结构域.本文就Notch信号通路主要元件和Neru的结构与功能及其关系进行综述. 展开更多
关键词 NOTCH信号通路 neuralized蛋白 DELTA
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部