To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a...To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.展开更多
Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be con...Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).展开更多
In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surem...In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line ...The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line searching algorithm based upon the geometric representation of lines (for non-maneuvering targets in space) in a 3-D space is derived. The convergency of the algorithm is proved. An analysis is performed of the theoretical detection performance of the algorithm. The statistical experiment results show high effectiveness and computational efficiency of the algorithm in the case of low SNR. The idea may be employed to satisfy the real-time processing requirement of an IR system.展开更多
文摘To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.
文摘Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).
文摘In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
文摘The purpose of this paper is to develop a high speed detection scheme for moving and / or stationary point targets in a multitarget environment as registered in an IR image sequence. An iterative approximate 3-D line searching algorithm based upon the geometric representation of lines (for non-maneuvering targets in space) in a 3-D space is derived. The convergency of the algorithm is proved. An analysis is performed of the theoretical detection performance of the algorithm. The statistical experiment results show high effectiveness and computational efficiency of the algorithm in the case of low SNR. The idea may be employed to satisfy the real-time processing requirement of an IR system.