目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算...目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算法的优势。结果数据服从多元正态分布与随机缺失,采用MCMC法填补10次所得的结果最佳。结论多重估算既可反映缺失数据的不确定性,又可充分利用现有资料的信息、提高统计效率、对模型的估计结果更加可信,是处理缺失数据的有效方法。展开更多
基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先...基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先验融合-后验求解的思路进行导弹命中精度估计。选取Dirichlet分布作为命中精度参数的先验分布,运用D-S(Dempster-Shafer)证据理论对先验信息进行融合处理,基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)方法对精度参数的后验分布进行求解。示例表明,该方法能够细致描述导弹命中目标不同重要区域的概率,并科学融合多源命中精度先验信息,为导弹命中精度估计方法及测试方案优化提供理论借鉴。展开更多
准确掌握浅层土体含水率及其变化过程对于岩土工程、环境工程地质等多个领域具有重要意义。利用自然温度信息反演含水率是一种适用于长距离、大范围含水率监测的新方法。针对常规自然温度信息法中土体温度测试及重建精细程度低导致含水...准确掌握浅层土体含水率及其变化过程对于岩土工程、环境工程地质等多个领域具有重要意义。利用自然温度信息反演含水率是一种适用于长距离、大范围含水率监测的新方法。针对常规自然温度信息法中土体温度测试及重建精细程度低导致含水率估算精度低等问题,以分布式光纤测温(fiber optic distributed temperature sensing,简称FO-DTS)技术为基础,引入显式有限差分算法和马尔科夫链蒙特卡洛(Markov chain Monte Carlo,简称MCMC)算法,提出了浅表土体温度重建及含水率反演的新方法,并开展了原位试坑试验验证。结果表明:(1)基于FO-DTS的高时空分辨率温度,显式有限差分算法可以有效重建土体不同深度的温度分布,重建温度场拟合残差约为0.2℃。(2)MCMC反演优化算法能准确估算土体热扩散系数,由此土体含水率的估算误差仅为7%;(3)浅表土体含水率估算结果能够很好地反映天气变化导致的土体水分迁移变化。新方法实现了土体含水率的精细化估算,适用场景广泛。展开更多
针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随...针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随机游走算法实现MCMC模拟的传统方法基础上,引入差分进化算法,利用种群中Markov链之间不同携带信息的相互作用关系,得到优化建议以快速逼近目标函数,解决了高维参数模型修正过程中采样滞留的缺点;引进竞争算法,通过不断的竞争刺激和内置失败者向胜利者学习的机制,采用较少的Markov链获得较高的精度,提高了模型修正效率与精度;最后,通过一个桁架结构的有限元模型修正数值算例验证了所提算法,并与标准MH算法的结果对比,得出该算法可以快速修正高维参数模型,具有较高的精度,且对随机噪声有良好的鲁棒性,为考虑不确定性的大型结构有限元模型修正提供了一种稳定有效的手段。展开更多
Although it is known that exact sampling algorithm is easy to construct and less sensitive to noise, the samples distri- bution of the algorithm deviates from the target states distribution due to the local dependent ...Although it is known that exact sampling algorithm is easy to construct and less sensitive to noise, the samples distri- bution of the algorithm deviates from the target states distribution due to the local dependent coupling problem. A new algorithm, named exact sampling with directional threshold (ES-DT) is intro- duced. The main advantage of the new algorithm, in comparison with the traditional exact sampling algorithm, is that it can control the sampling with a rejection strategy in Markov chain during the path growth, and closely approach the ideal distribution based on maintaining the target density. Simulation experiments show the effectiveness of the proposed algorithm.展开更多
载荷外推作为载荷谱编制的重要技术手段,当前研究缺乏对于载荷外推总体方法的全面梳理、马尔可夫稳态分布的求解方法适应性不够、缺乏不同非参频次外推方法的比较与选用原则,导致不便生成高精度载荷谱以支撑装备性能设计。围绕坦克在高...载荷外推作为载荷谱编制的重要技术手段,当前研究缺乏对于载荷外推总体方法的全面梳理、马尔可夫稳态分布的求解方法适应性不够、缺乏不同非参频次外推方法的比较与选用原则,导致不便生成高精度载荷谱以支撑装备性能设计。围绕坦克在高机动和极限工况下的载荷谱编制问题,基于某坦克行进间身管位移数据样本,分别使用基于雨流矩阵及核密度估计的非参数外推法、基于马尔可夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)的信号重构法以及Metropolis-Hastings(简称MH)直接采样法进行了载荷频次外推,并针对MCMC的信号重构法提出了一种改良马尔可夫稳态分布的求解方法。应用所提出的频次-极值相结合的载荷外推总体方法对坦克身管位移进行了频次扩充与极值预测,并结合实车试验结果验证了方法的准确性。研究结果表明:改良的马尔可夫稳态分布求解方法是有效的;在样本长度足够、外推精度要求不甚高的情况下,MH直接采样法可作为一种新的频次外推方法;运用频次-极值相结合的载荷外推总体方法所得结果精度较高;形成的频次外推法选用原则对于载荷谱编制过程中的方法选择具有一定的指导意义。研究工作为装备载荷谱的高质量编制提供了成熟的技术路线和参考。展开更多
现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MC...现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。展开更多
文摘目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算法的优势。结果数据服从多元正态分布与随机缺失,采用MCMC法填补10次所得的结果最佳。结论多重估算既可反映缺失数据的不确定性,又可充分利用现有资料的信息、提高统计效率、对模型的估计结果更加可信,是处理缺失数据的有效方法。
文摘基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先验融合-后验求解的思路进行导弹命中精度估计。选取Dirichlet分布作为命中精度参数的先验分布,运用D-S(Dempster-Shafer)证据理论对先验信息进行融合处理,基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)方法对精度参数的后验分布进行求解。示例表明,该方法能够细致描述导弹命中目标不同重要区域的概率,并科学融合多源命中精度先验信息,为导弹命中精度估计方法及测试方案优化提供理论借鉴。
文摘准确掌握浅层土体含水率及其变化过程对于岩土工程、环境工程地质等多个领域具有重要意义。利用自然温度信息反演含水率是一种适用于长距离、大范围含水率监测的新方法。针对常规自然温度信息法中土体温度测试及重建精细程度低导致含水率估算精度低等问题,以分布式光纤测温(fiber optic distributed temperature sensing,简称FO-DTS)技术为基础,引入显式有限差分算法和马尔科夫链蒙特卡洛(Markov chain Monte Carlo,简称MCMC)算法,提出了浅表土体温度重建及含水率反演的新方法,并开展了原位试坑试验验证。结果表明:(1)基于FO-DTS的高时空分辨率温度,显式有限差分算法可以有效重建土体不同深度的温度分布,重建温度场拟合残差约为0.2℃。(2)MCMC反演优化算法能准确估算土体热扩散系数,由此土体含水率的估算误差仅为7%;(3)浅表土体含水率估算结果能够很好地反映天气变化导致的土体水分迁移变化。新方法实现了土体含水率的精细化估算,适用场景广泛。
文摘针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随机游走算法实现MCMC模拟的传统方法基础上,引入差分进化算法,利用种群中Markov链之间不同携带信息的相互作用关系,得到优化建议以快速逼近目标函数,解决了高维参数模型修正过程中采样滞留的缺点;引进竞争算法,通过不断的竞争刺激和内置失败者向胜利者学习的机制,采用较少的Markov链获得较高的精度,提高了模型修正效率与精度;最后,通过一个桁架结构的有限元模型修正数值算例验证了所提算法,并与标准MH算法的结果对比,得出该算法可以快速修正高维参数模型,具有较高的精度,且对随机噪声有良好的鲁棒性,为考虑不确定性的大型结构有限元模型修正提供了一种稳定有效的手段。
文摘Although it is known that exact sampling algorithm is easy to construct and less sensitive to noise, the samples distri- bution of the algorithm deviates from the target states distribution due to the local dependent coupling problem. A new algorithm, named exact sampling with directional threshold (ES-DT) is intro- duced. The main advantage of the new algorithm, in comparison with the traditional exact sampling algorithm, is that it can control the sampling with a rejection strategy in Markov chain during the path growth, and closely approach the ideal distribution based on maintaining the target density. Simulation experiments show the effectiveness of the proposed algorithm.
文摘载荷外推作为载荷谱编制的重要技术手段,当前研究缺乏对于载荷外推总体方法的全面梳理、马尔可夫稳态分布的求解方法适应性不够、缺乏不同非参频次外推方法的比较与选用原则,导致不便生成高精度载荷谱以支撑装备性能设计。围绕坦克在高机动和极限工况下的载荷谱编制问题,基于某坦克行进间身管位移数据样本,分别使用基于雨流矩阵及核密度估计的非参数外推法、基于马尔可夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)的信号重构法以及Metropolis-Hastings(简称MH)直接采样法进行了载荷频次外推,并针对MCMC的信号重构法提出了一种改良马尔可夫稳态分布的求解方法。应用所提出的频次-极值相结合的载荷外推总体方法对坦克身管位移进行了频次扩充与极值预测,并结合实车试验结果验证了方法的准确性。研究结果表明:改良的马尔可夫稳态分布求解方法是有效的;在样本长度足够、外推精度要求不甚高的情况下,MH直接采样法可作为一种新的频次外推方法;运用频次-极值相结合的载荷外推总体方法所得结果精度较高;形成的频次外推法选用原则对于载荷谱编制过程中的方法选择具有一定的指导意义。研究工作为装备载荷谱的高质量编制提供了成熟的技术路线和参考。
文摘现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。