期刊文献+
共找到95,772篇文章
< 1 2 250 >
每页显示 20 50 100
Diamond related materials for energy storage and conversion applications
1
作者 YU Si-yu WANG Xi-yan YANG Nian-jun 《新型炭材料(中英文)》 北大核心 2025年第4期973-992,共20页
Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity ar... Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed. 展开更多
关键词 Diamond related materials Electrochemical energy storage Electrocatalytic energy conversion Solar energy conversion Future energy application directions
在线阅读 下载PDF
A review of 3D graphene materials for energy storage and conversion
2
作者 WU Zi-yuan XU Chi-wei +2 位作者 ZENG Jin-jue JIANG Xiang-fen WANG Xue-bin 《新型炭材料(中英文)》 北大核心 2025年第3期477-518,共42页
Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,inclu... Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications. 展开更多
关键词 GRAPHENE 3D network SYNTHESIS energy storage energy conversion
在线阅读 下载PDF
美国Graphitic Energy公司启动甲烷热解中试工厂
3
作者 燕春晖(摘译) 《石油炼制与化工》 北大核心 2025年第7期68-68,共1页
甲烷热解技术作为一种低排放制氢路径,正逐步从实验室走向工程化验证。美国初创企业Graphitic Energy公司宣布,其位于美国得克萨斯州圣安东尼奥的甲烷热解中试工厂已投入运行。该装置每日可将天然气转化为1 t固态碳和数百千克低碳氢,标... 甲烷热解技术作为一种低排放制氢路径,正逐步从实验室走向工程化验证。美国初创企业Graphitic Energy公司宣布,其位于美国得克萨斯州圣安东尼奥的甲烷热解中试工厂已投入运行。该装置每日可将天然气转化为1 t固态碳和数百千克低碳氢,标志着“绿松石氢”(又称“蓝绿氢”,Turquoise Hydrogen)生产技术向商业化迈出关键一步。此项目依托该公司近期追加的1500万美元A轮融资支持,将在美国西南研究院持续运行至2025年底。 展开更多
关键词 甲烷热解 Graphitic energy 中试工厂
在线阅读 下载PDF
科莱恩公司与Technip Energies公司合作推出新型苯乙烯催化剂
4
作者 《石油炼制与化工》 北大核心 2025年第8期138-138,共1页
2025年4月9日,科莱恩(Clariant)公司与法国德希尼布能源公司(Technip Energies)合作推出0.76超低水比的新型乙苯脱氢制苯乙烯催化剂StyroMax ^(TM) UL-100。与其他同类催化剂相比,StyroMax ^(TM) UL-100催化剂具有催化活性高、选择性高... 2025年4月9日,科莱恩(Clariant)公司与法国德希尼布能源公司(Technip Energies)合作推出0.76超低水比的新型乙苯脱氢制苯乙烯催化剂StyroMax ^(TM) UL-100。与其他同类催化剂相比,StyroMax ^(TM) UL-100催化剂具有催化活性高、选择性高、能源效率高、超低水比以及更低的蒸汽消耗等特点,同时可降低装置能耗和运营成本,并可直接与Badger乙苯脱氢制苯乙烯技术集成。StyroMax系列催化剂特点见表1。 展开更多
关键词 科莱恩 StyroMax Technip Energies 乙苯脱氢
在线阅读 下载PDF
Preparation and Modification of MXene Composites for Application in Electrochemical Energy Storage
5
作者 Zhang-Hai You Ding-Ze Lu +5 位作者 Kiran Kumar Kondamareddy Wen-Ju Gu Peng-Fei Cheng Jing-Xuan Yang Rui Zheng Hong-Mei Wang 《电化学(中英文)》 北大核心 2025年第5期1-27,共27页
With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage techno... With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions. 展开更多
关键词 MXene Preparation process Modification strategy Electrochemical energy storage
在线阅读 下载PDF
Microstructure modulation strategies from pitch molecules to derived carbon materials for electrochemical energy storage
6
作者 MENG Chao ZHANG Yan +4 位作者 WANG Ning ZHENG Xue-qing KONG De-yu HU Han WU Ming-bo 《新型炭材料(中英文)》 北大核心 2025年第4期837-859,共23页
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat... Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered. 展开更多
关键词 Pitch precursor Carbon materials MICROSTRUCTURE Modification strategies Electrochemical energy storage
在线阅读 下载PDF
The energy flexibility potential of short-term HVAC system management in office buildings under both typical and extreme weather conditions in China during the cooling season
7
作者 HUANG Bingjie LIU Meng LI Ziqiao 《土木与环境工程学报(中英文)》 北大核心 2025年第4期157-171,共15页
To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the ... To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment. 展开更多
关键词 energy flexibility demand-side management extreme weather HVAC systems thermal requirements
在线阅读 下载PDF
Superstructured carbon materials:Progress and challenges in energy storage and conversion technologies
8
作者 ZUO Ming-xue HU Xia +6 位作者 KONG De-bin WEI Xin-ru QIN Xin LV Wei YANG Quan-Hong KANG Fei-yu ZHI Lin-jie 《新型炭材料(中英文)》 北大核心 2025年第4期962-972,共11页
Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the... Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices. 展开更多
关键词 Carbon material application Superstructured carbons energy storage and conversion
在线阅读 下载PDF
Energy dissipation characteristics of sandstone under triaxial extension with different confining pressures
9
作者 MA Chun-de TAN Guan-shuang +2 位作者 YANG Wen-yuan KANG Zi-hao ZHANG Gui-yin 《Journal of Central South University》 2025年第6期2195-2207,共13页
After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of... After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of triaxial extension tests were conducted on sandstone under confining pressures of 10,30,50 and 70 MPa.Elastic energy and dissipated energy were separated by single unloading,the input energy u_(t),elastic energy u_(e),and dissipated energy u_(d)at different unloading stress levels were calculated by the integrating stress−strain curves.The results show that tensile cracks dominate fracture under lower confining pressure(10 MPa),and shear cracks play an increasingly important role in fracture as confining pressure increases(30,50 and 70 MPa).Based on the phenomenon that u_(e)and u_(d)increase linearly with increasing u_(t),a possible energy distribution mechanism of fracture mode transition under triaxial extension was proposed.In addition,it was found that peak energy storage capacity is more sensitive to confining pressure compared to elastic energy conversion capacity. 展开更多
关键词 triaxial extension energy distribution fracture mode energy dissipation energy storage
在线阅读 下载PDF
Energy Efficiency Operating Indicator Forecasting and Speed Design Optimization for Polar Ice Class Merchant Vessels
10
作者 LU Yu LI Chen−ran +3 位作者 ZHU Xiang−hang LI Shi−an GU Zhu−hao LIU She−wen 《船舶力学》 北大核心 2025年第6期901-911,共11页
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p... In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t. 展开更多
关键词 energy Efficiency Operational Indicator ice-class ships segment division design optimization
在线阅读 下载PDF
Controlling the conductivity and microporosity of biocarbon to produce supercapacitors with battery-level energies at an ultrahigh power
11
作者 CHENG Bei XIE Xing-yan +5 位作者 WAN Liu CHEN Jian ZHANG Yan DU Cheng GUO Xue-feng XIE Ming-jiang 《新型炭材料(中英文)》 北大核心 2025年第2期409-420,共12页
In order to meet the demands of new-generation electric vehicles that require high power output(over 15 kW/kg),it is crucial to increase the energy density of car-bon-based supercapacitors to a level comparable to tha... In order to meet the demands of new-generation electric vehicles that require high power output(over 15 kW/kg),it is crucial to increase the energy density of car-bon-based supercapacitors to a level comparable to that of batteries,while maintaining a high power density.We re-port a porous carbon material produced by immersing pop-lar wood(PW)sawdust in a solution of KOH and graphene oxide(GO),followed by carbonization.The resulting mater-ial has exceptional properties as an electrode for high-en-ergy supercapacitors.Compared to the material prepared by the direct carbonization of PW,its electrical conductivity was in-creased from 0.36 to 26.3 S/cm.Because of this and a high microporosity of over 80%,which provides fast electron channels and a large ion storage surface,when used as the electrodes for a symmetric supercapacitor,it gave a high energy density of 27.9 Wh/kg@0.95 kW/kg in an aqueous electrolyte of 1.0 mol/L Na_(2)SO_(4).The device also had battery-level energy storage with maximum energy densities of 73.9 Wh/kg@2.0 kW/kg and 67.6 Wh/kg@40 kW/kg,an ultrahigh power density,in an organic electrolyte of 1.0 mol/L TEABF4/AN.These values are comparable to those of 30−45 Wh/kg for Pb-acid batteries and 30−55 Wh/kg for aqueous lithium batteries.This work indicates a way to prepare carbon materials that can be used in supercapacit-ors with ultrahigh energy and power densities. 展开更多
关键词 Reduced GO modification Loose wood Symmetric supercapacitor Battery-level energy density
在线阅读 下载PDF
Modifying the pore structure of biomass-derived porous carbon for use in energy storage systems
12
作者 XIE Bin ZHAO Xin-ya +5 位作者 MA Zheng-dong ZHANG Yi-jian DONG Jia-rong WANG Yan BAI Qiu-hong SHEN Ye-hua 《新型炭材料(中英文)》 北大核心 2025年第4期870-888,共19页
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur... The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices. 展开更多
关键词 energy storage systems Porous carbon Biomass precursors Pore structure Machine learning-assisted
在线阅读 下载PDF
Energy evolution model and energy response characteristics of freeze-thaw damaged sandstone under uniaxial compression
13
作者 ZHANG Chun-yang TAN Tao ZHAO Er-cheng 《Journal of Central South University》 2025年第6期2328-2348,共21页
Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy c... Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy calculation method and energy self-inhibition model are introduced to explore their energy characteristics in this paper.The applicability of the energy self-inhibition model was verified by combining the data of FT cycles and uniaxial compression tests of intact and pre-cracked sandstone samples,as well as published reference data.In addition,the energy evolution characteristics of FT damaged rocks were discussed accordingly.The results indicate that the energy self-inhibition model perfectly characterizes the energy accumulation characteristics of FT damaged rocks under uniaxial compression before the peak strength and the energy dissipation characteristics before microcrack unstable growth stage.Taking the FT damaged cyan sandstone sample as an example,it has gone through two stages dominated by energy dissipation mechanism and energy accumulation mechanism,and the energy rate curve of the pre-cracked sample shows a fall-rise phenomenon when approaching failure.Based on the published reference data,it was found that the peak total input energy and energy storage limit conform to an exponential FT decay model,with corresponding decay constants ranging from 0.0021 to 0.1370 and 0.0018 to 0.1945,respectively.Finally,a linear energy storage equation for FT damaged rocks was proposed,and its high reliability and applicability were verified by combining published reference data,the energy storage coefficient of different types of rocks ranged from 0.823 to 0.992,showing a negative exponential relationship with the initial UCS(uniaxial compressive strength).In summary,the mechanism by which FT weakens the mechanical properties of rocks has been revealed from an energy perspective in this paper,which can provide reference for related issues in cold regions. 展开更多
关键词 freeze-thaw damage energy self-inhibition model energy evolution linear energy storage equation
在线阅读 下载PDF
Theoretical and experimental study of a compact energy absorption structure
14
作者 WANG Yan-jing SUN Cheng-ming +2 位作者 CHEN Fei-peng YAO Shu-jian SUN Hong-ji 《Journal of Central South University》 2025年第7期2766-2780,共15页
The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study pr... The advancement of rail transportation necessitates energy absorption structures that not only ensure safety but also optimize space utilization,a critical yet often overlooked aspect in existing designs.This study presents a compact energy absorption structure(CE)that integrates the advantages of cutting rings and thin-walled tube modules,offering a solution with the high space utilization and the superior crashworthiness.Through theoretical modeling and experimental validation using a drop-weight test system,we analyzed the dynamic response and energy absorption characteristics of the CE.Comparative analysis with existing structures,namely the cutting shear rings(CSR)energy absorption structure and thin-walled tube structure(TW),revealed that the CE significantly improves specific energy absorption(SEA)by 102.76%and 61.54%,respectively,and optimizes crush force efficiency(CFE)by increasing 8.23%and 5.49%compared to CSR and TW.The innovative design of the CE,featuring deformation gradient and delay response strategies,showcases its potential for practical application in engineering,advancing the field of crashworthiness engineering. 展开更多
关键词 energy absorption structure drop-weight test impact dynamics specific energy absorption crush force efficiency
在线阅读 下载PDF
Impact-induced energy release of typical HCP metal/PTFE/W reactive materials:Experimental study and predictive modeling via machine learning
15
作者 Zhenwei Zhang Weixi Tian +7 位作者 Tianyi Wang Zhiyuan Liu Yansong Yang Chao Ge Lei Guo Yuan He Chuanting Wang Yong He 《Defence Technology(防务技术)》 2025年第5期124-138,共15页
Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two t... Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively. 展开更多
关键词 Impact-induced energy release Reactive materials HCP metal/PTFE/W energy release efficiency Support vector regression
在线阅读 下载PDF
Look-ahead horizon-based energy optimization with traffic prediction for connected HEVs
16
作者 XU Fu-guo SHEN Tie-long 《控制理论与应用》 北大核心 2025年第8期1534-1542,共9页
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec... With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed. 展开更多
关键词 look-ahead horizon connected and automated vehicle(CAV) hybrid electric vehicle(HEV) energy efficiency optimization traffic prediction
在线阅读 下载PDF
DEF-based energy consumption balancing optimization for LEO satellite networks
17
作者 DI Hang DONG Tao +1 位作者 LIU Zhihui JIN Shichao 《Journal of Systems Engineering and Electronics》 2025年第4期922-931,共10页
In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the... In low Earth orbit(LEO)satellite networks,on-board energy resources of each satellite are extremely limited.And with the increase of the node number and the traffic transmis-sion pressure,the energy consumption in the networks presents uneven distribution.To achieve energy balance in networks,an energy consumption balancing optimization algorithm of LEO networks based on distance energy factor(DEF)is proposed.The DEF is defined as the function of the inter-satellite link dis-tance and the cumulative network energy consumption ratio.According to the minimum sum of DEF on inter-satellite links,an energy consumption balancing algorithm based on DEF is pro-posed,which can realize dynamic traffic transmission optimiza-tion of multiple traffic services.It can effectively reduce the energy consumption pressure of core nodes with high energy consumption in the network,make full use of idle nodes with low energy consumption,and optimize the energy consumption dis-tribution of the whole network according to the continuous itera-tions of each traffic service flow.Simulation results show that,compared with the traditional shortest path algorithm,the pro-posed method can improve the balancing performance of nodes by 75%under certain traffic pressure,and realize the optimiza-tion of energy consumption balancing of the whole network. 展开更多
关键词 low Earth orbit(LEO)satellite networks distance energy factor(DEF) energy consumption balancing flow trans-mission optimization.
在线阅读 下载PDF
Enhancing energy density in planar micro-supercapacitors:The role of few-layer graphite/carbon black/NiCo_(2)O_(4) composite materials
18
作者 ZHANG Wanggang HUANG Lei +3 位作者 WANG Menghu WANG Jian WEI Aili LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第5期646-662,共17页
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is... The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies. 展开更多
关键词 graphite/carbon black composite NiCo_(2)O_(4) screen printing planar micro-supercapacitor energy density mechanical flexibility
在线阅读 下载PDF
Effect of loading rate on the mechanical response and energy evolution of skarn rock subjected to constant-amplitude cyclic loading
19
作者 WU Yun-feng WANG Yu +5 位作者 LI Chang-hong ZHOU Bao-kun LI Peng CAI Mei-feng SUN Chang-kun TIAN Zi-cheng 《Journal of Central South University》 2025年第3期1117-1140,共24页
This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain... This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies. 展开更多
关键词 cyclic loading loading rate constant amplitude deformation characteristics energy dissipation
在线阅读 下载PDF
Prospects of energy release and mechanical behavior of reactive highentropy alloys
20
作者 Shanghao Wu Zezhou Li +4 位作者 Jianye He Fan Zhang Lin Wang Lei Zhang Xingwang Cheng 《Defence Technology(防务技术)》 2025年第8期236-253,共18页
High-entropy alloys(HEAs)with multi-component elements have attracted significant interest since they exhibit numerous superior properties compared to traditional ones.These properties include significant energy relea... High-entropy alloys(HEAs)with multi-component elements have attracted significant interest since they exhibit numerous superior properties compared to traditional ones.These properties include significant energy release,remarkable fracture toughness,and high strength,making them promising candidates as energetic structural materials(ESMs).This paper summarizes the energy release mechanisms under dynamic impact and the mechanical behavior of TiZr-based HEAs,TiNb-based HEAs,andWbased HEA,including velocity threshold for energy release,chamber quasi-static pressure curve,energy release efficiency,interface reactions,and"self-sharpening".In addition,we propose future research directions for their energy release and mechanical behavior. 展开更多
关键词 High-entropy alloys Energetic structural materials energy release mechanism Mechanical properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部