有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点...有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用.展开更多
近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多...近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多模实体及其多维关系.为了应对该挑战性问题,本文提出了一种新的双重社区聚类与关联方法(Communities Clustering and Associating Method,CCAM),该方法先在LBSN的社交媒体层上,通过信息熵度量用户发布主题之间的相似性,进而再将相似用户兴趣聚类问题转换成求解基于模糊聚类的目标函数以获得重叠的兴趣主题簇结构.然后在地理位置层中,将用户-位置签到关系网络形成的二分图转换为超图模型,并采用超边聚类方式得到用户关于地理位置的兴趣点特征簇.最后,在兴趣主题簇与地理位置簇之间借助中间用户层的社交关系建立这两层异质簇间的关联性表示模型,并通过随机梯度下降法求解模型的局部最优解.在两个真实数据集Foursquare(NYC)和Yelp上的实验结果表明,本文提出的CCAM方法有效融合了用户-媒体发布关系、用户间社交关系、用户-位置签到关系等多维度关系,能准确获得LBSN中紧密关联的用户兴趣主题簇与地理位置簇,使得这双层社区结构不仅在外部结构特征与兴趣内聚性指标上都优于传统算法,并且还在兴趣主题推荐与位置兴趣点推荐方面的平均准确率提高至少32%.展开更多
企业竞争优势越来越依赖其所处的利益相关者之间的资源、权利及其关系,但现有的利益相关者管理理论研究视角各异,缺乏系统梳理。以文本分析方法为基础,基于Web of Science核心数据库的文献,系统论述了利益相关者研究的知识演进研究逻辑...企业竞争优势越来越依赖其所处的利益相关者之间的资源、权利及其关系,但现有的利益相关者管理理论研究视角各异,缺乏系统梳理。以文本分析方法为基础,基于Web of Science核心数据库的文献,系统论述了利益相关者研究的知识演进研究逻辑和主要议题框架。研究发现:从管理学视角看,利益相关者管理理论研究主要遵循"个体-关系-网络"的逻辑演进,并以相应的知识图谱聚类展开。利用重点文献对利益相关者研究的知识演进分析,进一步发现利益相关者管理理论的议题框架可分为利益相关者管理理论研究重要性、研究逻辑与主题、研究方法与机理研究;根据主体属性及个体、关系到网络的研究逻辑,需要分别从主体、关系和网络三个方面解决好利益相关者主体的个体属性、关系与网络的整体属性的割裂状态。展开更多
文摘有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用.
文摘近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多模实体及其多维关系.为了应对该挑战性问题,本文提出了一种新的双重社区聚类与关联方法(Communities Clustering and Associating Method,CCAM),该方法先在LBSN的社交媒体层上,通过信息熵度量用户发布主题之间的相似性,进而再将相似用户兴趣聚类问题转换成求解基于模糊聚类的目标函数以获得重叠的兴趣主题簇结构.然后在地理位置层中,将用户-位置签到关系网络形成的二分图转换为超图模型,并采用超边聚类方式得到用户关于地理位置的兴趣点特征簇.最后,在兴趣主题簇与地理位置簇之间借助中间用户层的社交关系建立这两层异质簇间的关联性表示模型,并通过随机梯度下降法求解模型的局部最优解.在两个真实数据集Foursquare(NYC)和Yelp上的实验结果表明,本文提出的CCAM方法有效融合了用户-媒体发布关系、用户间社交关系、用户-位置签到关系等多维度关系,能准确获得LBSN中紧密关联的用户兴趣主题簇与地理位置簇,使得这双层社区结构不仅在外部结构特征与兴趣内聚性指标上都优于传统算法,并且还在兴趣主题推荐与位置兴趣点推荐方面的平均准确率提高至少32%.
文摘企业竞争优势越来越依赖其所处的利益相关者之间的资源、权利及其关系,但现有的利益相关者管理理论研究视角各异,缺乏系统梳理。以文本分析方法为基础,基于Web of Science核心数据库的文献,系统论述了利益相关者研究的知识演进研究逻辑和主要议题框架。研究发现:从管理学视角看,利益相关者管理理论研究主要遵循"个体-关系-网络"的逻辑演进,并以相应的知识图谱聚类展开。利用重点文献对利益相关者研究的知识演进分析,进一步发现利益相关者管理理论的议题框架可分为利益相关者管理理论研究重要性、研究逻辑与主题、研究方法与机理研究;根据主体属性及个体、关系到网络的研究逻辑,需要分别从主体、关系和网络三个方面解决好利益相关者主体的个体属性、关系与网络的整体属性的割裂状态。