期刊文献+

航路网络关键节点的识别方法 被引量:1

Identification Method for Key Nodes in En-Route Network
在线阅读 下载PDF
导出
摘要 有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用. Accurate identification of key nodes is of great significance for enhancing network resilience and improving operational capabilities.In order to improve the identification accuracy of key nodes in the en-route network,a comprehensive evaluation method based on the technique for order preference by similarity to an ideal solution(TOPSIS)-grey correlation analysis method and a node classification method for the en-route network were proposed.Firstly,an evaluation index system of key nodes in the en-route network was constructed from three perspectives:complex network characteristics,traffic volume,and vulnerability.Then,the relative entropy was introduced to improve the TOPSIS method,and the importance of en-route waypoints was comprehensively evaluated by combining this method with the grey correlation analysis method.The K-means clustering method was used to effectively divide the levels of en-route waypoints.Finally,key node identification was carried out based on the actual operation data of civil air traffic management.It finds that the results obtained by the constructed evaluation index system of key nodes in the en-route network are more comprehensive than the evaluation results of a single index.The improved TOPSIS-grey correlation analysis is more accurate than the traditional TOPSIS method.The proposed identification method finds that there are 29 key nodes in the typical busy en-route network in Eastern China,which play a key role in the network structure and traffic volume.
作者 田文 方琴 周雪芳 宋津津 TIAN Wen;FANG Qin;ZHOU Xuefang;SONG Jinjin(College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《西南交通大学学报》 北大核心 2025年第1期233-242,共10页 Journal of Southwest Jiaotong University
基金 国家重点研发计划(2021YFB1600500) 国家自然科学基金项目(71971112,U2033203) 江苏省研究生创新计划项目(xcxjh20210710)。
关键词 复杂网络 逼近理想值排序 相对熵 灰色关联度 K-MEANS聚类 complex networks TOPSIS relative entropy grey relational degree K-means clustering
作者简介 第一作者:田文(1981-),女,副教授,博士,研究方向为空中交通流量管理,E-mail:tianwen0665@qq.com。
  • 相关文献

参考文献8

二级参考文献71

共引文献239

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部