期刊文献+
共找到194,725篇文章
< 1 2 250 >
每页显示 20 50 100
基于数据预处理和Bi-LSTM的智能电网预测方法 被引量:3
1
作者 李岩 刘鑫月 +3 位作者 乔俊杰 王毛桃 刘一帆 齐磊杰 《电测与仪表》 北大核心 2025年第6期120-125,共6页
短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精... 短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。 展开更多
关键词 短期预测 数据预处理 bi-lstm 深度学习 时间序列
在线阅读 下载PDF
基于AWOA-BI-LSTM的光伏发电功率预测 被引量:1
2
作者 吴仕宏 张璧臣 +1 位作者 吴佳文 武兴宇 《沈阳农业大学学报》 北大核心 2025年第2期131-143,共13页
[目的]光伏发电功率的准确预测对可再生能源整合到电网、市场和建筑能源管理系统中至关重要。为提高预测精度,本研究提出一种基于改进鲸鱼优化算法(AWOA)和双向长短期记忆网络(Bi-LSTM)的混合模型(AWOA-Bi-LSTM)。针对传统鲸鱼优化算法(... [目的]光伏发电功率的准确预测对可再生能源整合到电网、市场和建筑能源管理系统中至关重要。为提高预测精度,本研究提出一种基于改进鲸鱼优化算法(AWOA)和双向长短期记忆网络(Bi-LSTM)的混合模型(AWOA-Bi-LSTM)。针对传统鲸鱼优化算法(WOA)寻优精度低、收敛速度慢的问题,提出动态权重因子和自适应参数调整两种改进策略,以增强模型的全局搜索能力和收敛效率。[方法]利用实际光伏发电数据和实测气象数据将AWOA-Bi-LSTM和WOA-Bi-LSTM以及GRNN进行对比实验。[结果]其中AWOA-Bi-LSTM在测试集和训练集上的R^(2)值分别为0.99701和0.99843;测试集和训练集的RMSE分别为1.585和0.90063。测试集RPD为20.1604,训练集RPD为25.9357。[结论]AWOA-Bi-LSTM在拟合度、预测精度和稳定性方面均优于传统方法,能够更有效地捕捉时间序列数据中的复杂模式和趋势,显著提升预测性能。 展开更多
关键词 光伏发电 功率预测 LSTM bi-lstm WOA算法
在线阅读 下载PDF
基于Bi-LSTM网络的游标传感器输出解调技术 被引量:1
3
作者 曾心 郭茂森 +2 位作者 张昕 丁晖 胡红利 《光谱学与光谱分析》 北大核心 2025年第5期1257-1263,共7页
针对光学游标传感器输出解调难的问题,提出基于双向长短时记忆(Bi-LSTM)网络的光谱数据预测技术。利用Bi-LSTM网络对数据序列的预测能力,实现了宽光谱范围的光谱数据预测,从而解决了游标传感器由于工作光谱范围有限的光源或光谱扫描技术... 针对光学游标传感器输出解调难的问题,提出基于双向长短时记忆(Bi-LSTM)网络的光谱数据预测技术。利用Bi-LSTM网络对数据序列的预测能力,实现了宽光谱范围的光谱数据预测,从而解决了游标传感器由于工作光谱范围有限的光源或光谱扫描技术,而导致游标传感器难以实现输出解调的技术难题。采用该方法,只要采集有限波长范围的传感器输出光谱,利用训练好的Bi-LSTM模型就能够在较宽的波长范围内准确预测传感器输出光谱的包络曲线,从而极大降低了对游标传感器工作光谱范围的技术要求。介绍了Bi-LSTM网络用于游标传感器输出解调的基本原理和实现过程,实验证明了该方法对游标传感器输出光谱数据预测的准确性,其预测曲线与实际光谱包络在波峰处的波长最大误差~0.02 nm,幅值最大误差仅为0.058%。验证了Bi-LSTM网络对具有不同包络周期的游标传感器输出解调的泛化性,针对不同包络周期的游标传感器输出光谱,其最大预测误差为0.02 nm,最大均方根误差(RMSE)为9.72×10^(-5),证明了所训练的Bi-LSTM网络对不同包络周期的游标传感器输出光谱都具有准确的“预测性”和“跟踪度”。研究表明,实际工作中只要光源的波长范围能够覆盖游标传感器的1/2个光谱包络周期(绝大多数情况下可以满足),利用Bi-LSTM网络能够在宽光谱范围内,实现对传感器输出光谱的准确预测,从而极大降低了对游标传感器的工作光源(或其他光谱扫描技术)的光谱范围的要求。本研究解决了游标传感器的输出解调光谱范围过宽的难题,具有理论及实际应用意义。 展开更多
关键词 光学游标传感器 自由光谱范围 光谱预测 bi-lstm网络
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
4
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
融合Bi-LSTM与多头注意力的分层强化学习推理方法 被引量:4
5
作者 李卫军 刘世侠 +3 位作者 刘雪洋 丁建平 苏易礌 王子怡 《计算机应用研究》 北大核心 2025年第1期71-77,共7页
知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注。针对知识推理可解释性差、不能利用隐藏语义信息和奖励稀疏的问题提出了一种融合Bi-LSTM与多头注意力机制的分层强化学习方法。将知识图谱通过谱聚类分簇,使智能体分... 知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注。针对知识推理可解释性差、不能利用隐藏语义信息和奖励稀疏的问题提出了一种融合Bi-LSTM与多头注意力机制的分层强化学习方法。将知识图谱通过谱聚类分簇,使智能体分别在簇与实体间进行推理,利用Bi-LSTM与多头注意力机制融合模块对智能体的历史信息进行处理,可以更有效地发现和利用知识图谱隐藏的语义信息。Hight智能体通过分层策略网络选择目标实体所在的簇,指导Low智能体进行实体间的推理。利用强化学习智能体可以有效地解决可解释性差的问题,并通过相互奖励机制对两个智能体的动作选择以及搜索路径给予奖励,以解决智能体奖励稀疏的问题。在FB15K-237、WN18RR、NELL-995三个公开数据集上的实验结果表明,提出的方法能够捕捉序列数据中的长期依赖关系对长路径进行推理,并且在推理任务中的性能优于同类方法。 展开更多
关键词 知识推理 分层强化学习 bi-lstm 多头注意力机制
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
6
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
数控铣床主轴热误差Bi-LSTM预测建模 被引量:2
7
作者 马宏宇 尹志宏 +2 位作者 叶愈 南朋涛 朱升硕 《机床与液压》 北大核心 2025年第14期51-57,共7页
为探究数控铣床复杂热源导致的主轴温升与热误差之间的非线性映射关系,提出一种基于双向长短期记忆神经网络(Bi-LSTM)的主轴热误差预测模型。以国产某型号精密数控铣床主轴单元为研究对象,采用激光位移传感器对主轴空转状态下的轴向热... 为探究数控铣床复杂热源导致的主轴温升与热误差之间的非线性映射关系,提出一种基于双向长短期记忆神经网络(Bi-LSTM)的主轴热误差预测模型。以国产某型号精密数控铣床主轴单元为研究对象,采用激光位移传感器对主轴空转状态下的轴向热误差进行测量,借助温度传感器采集主轴关键温度测点的温度。采用萨维茨基-戈莱滤波器对主轴温升、热误差数据进行滤波降噪处理,使用手肘法确定最佳聚类数,利用模糊C均值聚类结合灰色关联度分析(FCM+GRA)方法完成温度敏感点的选取,避免温度测点之间多重共线性问题。最后,以主轴轴向热误差和温度敏感点温升数据为输入,建立主轴热误差Bi-LSTM预测模型,并基于平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和相关性系数R 2对模型的预测效果进行评估。结果表明:与LSTM(单向长短期记忆神经网络)、GRU(门控循环单元)和BPNN(反向传播神经网络)相比,Bi-LSTM预测模型的MAE分别降低了18.5%、21.8%、44.1%,RMSE分别降低了9.5%、20.2%、43.8%。因此,Bi-LSTM主轴热误差预测模型具有更高的鲁棒性和准确性。 展开更多
关键词 数控机床 主轴热误差 FCM+GRA算法 bi-lstm模型 热误差预测
在线阅读 下载PDF
基于Bi-LSTM网络的封装基板翘曲预测模型
8
作者 王昊舟 王珺 《半导体技术》 北大核心 2025年第10期1057-1066,共10页
针对封装基板的翘曲预测问题,提出一种基于循环神经网络(RNN)与双向长短期记忆(Bi-LSTM)网络相结合的机器学习方法,构建封装基板翘曲预测模型。该模型可预测非对称基板翘曲分布,并有效提高预测效率与准确性。为获取模型训练所需数据集,... 针对封装基板的翘曲预测问题,提出一种基于循环神经网络(RNN)与双向长短期记忆(Bi-LSTM)网络相结合的机器学习方法,构建封装基板翘曲预测模型。该模型可预测非对称基板翘曲分布,并有效提高预测效率与准确性。为获取模型训练所需数据集,开发了随机游走自动布线算法,生成不同特征的基板布线结构,并利用铜迹线强化有限元分析(FEA)方法获取翘曲分布数据。研究结果表明,Bi-LSTM网络模型在80个训练周期内误差收敛至0.05 mm^(2)以下,结构相似性衡量指标(SSIM)均大于0.7;在非训练集铜布线验证样本上表现出良好的泛化能力,并且预测时间仅需数秒,预测速度显著快于FEA,为基板设计提供了快速、准确的翘曲预测新途径,有助于提高优化迭代效率。 展开更多
关键词 双向长短期记忆(bi-lstm)网络 基板翘曲分布 封装仿真 有限元分析(FEA) 机器学习
在线阅读 下载PDF
基于增强Bi-LSTM的船舶运动模型辨识 被引量:2
9
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 雷鹏 《中国舰船研究》 北大核心 2025年第1期76-84,共9页
[目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提... [目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提取。基于此,设计一维卷积神经网络(1D-CNN)提取序列的空间维度特征。然后,采用多头自注意力机制(MHSA)多角度对序列进行自适应加权处理。利用KVLCC2船舶航行数据,将所提增强Bi-LSTM模型与支持向量机(SVM)、门控循环单元(GRU)、长短期记忆神经网络(LSTM)模型的预测效果进行对比。[结果]所提增强Bi-LSTM模型在测试集中均方根误差(RMSE)、平均绝对误差(MAE)性能指标分别低于0.015和0.011,决定系数(R2)高于0.99913,预测精度显著高于SVM,GRU,LSTM模型。[结论]增强Bi-LSTM模型泛化性能优异,预测稳定性及预测精度高,有效实现了船舶的运动模型辨识。 展开更多
关键词 系统辨识 非参数化建模 一维卷积神经网络 双向长短期记忆神经网络 多头自注意力机制
在线阅读 下载PDF
基于深度残差Bi-LSTM的风电功率预测
10
作者 叶利娟 裴生雷 +1 位作者 董时 谭琳 《现代电子技术》 北大核心 2025年第20期113-119,共7页
深度学习模型在风电功率预测方面通常比传统机器学习模型表现更佳。然而,随着网络层数的增加,性能提升往往受到网络退化问题的阻碍。针对此问题,提出一种结合深度残差结构与双向长短期记忆(Bi-LSTM)网络的风电功率预测技术。该方法通过... 深度学习模型在风电功率预测方面通常比传统机器学习模型表现更佳。然而,随着网络层数的增加,性能提升往往受到网络退化问题的阻碍。针对此问题,提出一种结合深度残差结构与双向长短期记忆(Bi-LSTM)网络的风电功率预测技术。该方法通过引入残差连接增强深层Bi-LSTM网络的训练稳定性,同时捕捉风电数据的长期时序依赖。此外,采用Adam算法优化模型超参数,并在青海某风电企业数据集上对该方法进行了实证测试。实验结果表明,与支持向量回归(SVR)、标准LSTM模型和Bi-LSTM模型相比,深度残差Bi-LSTM模型在风电功率预测方面展现出显著优势:其MAE预测误差仅为61.55,远低于其他三种方法的MAE;而决定系数R^(2)值高达0.9377,表明模型具有良好的拟合度和预测准确性。这充分证明了深度残差Bi-LSTM模型在风电功率预测领域的潜力和价值。 展开更多
关键词 风电功率预测 深度残差 bi-lstm 残差连接 Adam优化算法 超参数优化
在线阅读 下载PDF
基于Bi-LSTM算法的露天矿山爆破振动速度预测
11
作者 张伟 倪彬 +2 位作者 王立 谢伟 魏士钰 《矿冶工程》 北大核心 2025年第1期21-26,共6页
针对传统公式对爆破振动预测精度不高的问题,构建了基于Bi-LSTM(双向长短期记忆网络)算法的露天矿山爆破振动速度预测模型。该模型可以在两个方向上处理时间序列数据,同时捕获过去和未来的上下输入信息与输出数据之间的依赖关系。以马... 针对传统公式对爆破振动预测精度不高的问题,构建了基于Bi-LSTM(双向长短期记忆网络)算法的露天矿山爆破振动速度预测模型。该模型可以在两个方向上处理时间序列数据,同时捕获过去和未来的上下输入信息与输出数据之间的依赖关系。以马钢集团高村铁矿露天矿山爆破开采监测数据为依据,选取相关数据为输入参数,并将Bi-LSTM预测结果与萨道夫斯基公式预测结果进行对比。结果表明:萨道夫斯基公式预测的爆破振动速度平均误差为26.87%,Bi-LSTM算法预测的爆破振动速度平均误差为8.95%;Bi-LSTM模型预测结果与实测结果具有较高的吻合度。后期将以其他矿山的监测数据为依托对模型进行训练,以提高Bi-LSTM模型的泛化能力,并通过迁移学习植入矿山安全实时监测预警平台。 展开更多
关键词 露天矿山 爆破振动 振动速度 预测模型 bi-lstm 深度学习算法
在线阅读 下载PDF
基于Bi-LSTM与改进NSGAⅢ的混凝土配合比多目标优化
12
作者 黄斌彬 曾磊 +2 位作者 汪超 孙良福 胡高兴 《材料导报》 北大核心 2025年第19期122-129,共8页
针对混凝土配合比优化过程中涉及的多变量、多目标以及非线性问题,提出了一种基于双向长短期记忆神经网络(Bi-LSTM)与改进的第三代非支配排序遗传算法(NSGAⅢ)的求解模式。该模式首先构建了Bi-LSTM模型预测混凝土抗压强度数据驱动方法,... 针对混凝土配合比优化过程中涉及的多变量、多目标以及非线性问题,提出了一种基于双向长短期记忆神经网络(Bi-LSTM)与改进的第三代非支配排序遗传算法(NSGAⅢ)的求解模式。该模式首先构建了Bi-LSTM模型预测混凝土抗压强度数据驱动方法,从而准确地捕捉配合比与抗压强度之间的非线性关系;在此基础上,采用NSGAⅢ算法完成了抗压强度、材料成本和碳排放量等多目标优化设计。配合比优化过程中,采用了结合自适应变异和端点扰动的改进策略来提高NSGAⅢ算法的多目标优化性能。结果表明:Bi-LSTM模型可准确地预测抗压强度,在测试集中预测值与实际值的相关系数为0.95、均方根误差为5.3、平均绝对误差为4.1,模型预测精度和泛化能力均优于其他模型,具有更高的混凝土抗压强度预测精度。改进NSGAⅢ算法在配合比优化性能方面超越了传统的多目标粒子群(MOPSO)、NSGAII和NSGAⅢ等算法。该成果可为工程实践中混凝土配合比优化设计提供参考。 展开更多
关键词 混凝土配合比设计 抗压强度预测 多目标优化 bi-lstm 改进NSGAⅢ
在线阅读 下载PDF
Projective synchronization control and simulation of drive system and response network
13
作者 LI De-kui 《兰州大学学报(自然科学版)》 北大核心 2025年第2期208-214,共7页
Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev... Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller. 展开更多
关键词 pinning control projective synchronization drive system response network
在线阅读 下载PDF
Exploration of the Biomedical Functions and Applications of Metal-Polyphenol Network Structures
14
作者 LI Zhining XU Liangge +1 位作者 ZHANG Yuli WANG Chen 《有色金属(中英文)》 北大核心 2025年第9期1460-1482,共23页
The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biom... The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biomedical challenges.Nanomaterials possess distinctive structures and properties.Through the exploration of the fabrication of emerging nanomedicines,multiple functions can be integrated to enable more precise diagnosis and treatment,thereby compensating for the limitations of traditional treatment modalities.Among various substances,polyphenols are natural organic compounds classified as plant secondary metabolites and are ubiquitously present in vegetables,teas,and other plants.Polyphenols are rich in active groups,including hydroxyl,carboxyl,amino,and conjugated double bonds.They exhibit robust adhesion,antioxidant,anti-inflammatory,and antibacterial biological activities and are extensively applied in pharmaceutical formulations.Additionally,polyphenols are characterized by their low cost,ready availability,and do not necessitate intricate chemical synthesis processes.Nevertheless,when natural polyphenol-based nanomedicines are utilized in isolation,they encounter several issues.These include poor water solubility,feeble stability,low bioavailability,the requirement for high dosages,and difficulties in precisely reaching the site of action.To address these concerns,researchers have developed nanomedicines by combining metal ions and functional ligands through metal coordination strategies.Nanomaterials,owing to their unique electronic and optical properties,have been successfully introduced into the realm of medical biology.Nano preparations not only enhance the stability of natural products but also endow them with targeting capabilities,thus enabling precise drug delivery.Polyphenols can further synergize with metal ions,anti-cancer drugs,or photosensitizers via supramolecular interactions to achieve multifunctional synergistic therapies,such as targeted drug delivery,efficacy enhancement,and the construction of engineering scaffolds.Metal-Polyphenol Coordination Polymers(MPCPs),composed of metal ions and phenolic ligands,are regarded as ideal nanoplatforms for disease diagnosis and treatment.In recent years,MPCPs have attracted extensive research in the biomedical field on account of their advantages,including facile synthesis,adjustable structure,excellent biocompatibility,and pH responsiveness.In this review,the classification and preparation strategies of MPCPs were systematically presented.Subsequently,their remarkable achievements in biomedical domains,such as bioimaging,biosensing,drug delivery,tumor therapy,and antimicrobial applications were highlighted.Finally,the principal limitations and prospects of MPCPs were comprehensi vely discussed. 展开更多
关键词 metal polyphenol network NANOTECHNOLOGY NANO-COPPER tumor therapy
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
15
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
16
作者 LIU Hang ZHU Yu-Xin +6 位作者 GUO Si-Lin PAN Xin-Yun XIE Yuan-Jie LIAO Si-Cong DAI Xin-Wen SHEN Ping XIAO Yu-Bo 《生物化学与生物物理进展》 北大核心 2025年第9期2376-2392,共17页
Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first ... Objective Traditional Chinese medicine(TCM)constitutes a valuable cultural heritage and an important source of antitumor compounds.Poria(Poria cocos(Schw.)Wolf),the dried sclerotium of a polyporaceae fungus,was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia.Traditionally recognized for its diuretic,spleen-tonifying,and sedative properties,modern pharmacological studies confirm that Poria exhibits antioxidant,anti-inflammatory,antibacterial,and antitumor activities.Pachymic acid(PA;a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid),isolated from Poria,is a principal bioactive constituent.Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms,though these remain incompletely characterized.Neuroblastoma(NB),a highly malignant pediatric extracranial solid tumor accounting for 15%of childhood cancer deaths,urgently requires safer therapeutics due to the limitations of current treatments.Although PA shows multi-mechanistic antitumor potential,its efficacy against NB remains uncharacterized.This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking,dynamic simulations,and in vitro assays,aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays.Methods This study employed network pharmacology to identify potential targets of PA in NB,followed by validation using molecular docking,molecular dynamics(MD)simulations,MM/PBSA free energy analysis,RT-qPCR and Western blot experiments.Network pharmacology analysis included target screening via TCMSP,GeneCards,DisGeNET,SwissTargetPrediction,SuperPred,and PharmMapper.Subsequently,potential targets were predicted by intersecting the results from these databases via Venn analysis.Following target prediction,topological analysis was performed to identify key targets using Cytoscape software.Molecular docking was conducted using AutoDock Vina,with the binding pocket defined based on crystal structures.MD simulations were performed for 100 ns using GROMACS,and RMSD,RMSF,SASA,and hydrogen bonding dynamics were analyzed.MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex.In vitro validation included RT-qPCR and Western blot,with GAPDH used as an internal control.Results The CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability.GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress,vesicle lumen,and protein tyrosine kinase activity.KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT,MAPK,and Ras signaling pathways.Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1,EGFR,SRC,and HSP90AA1.RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1,EGFR,and SRC while increasing the HSP90AA1 mRNA and protein levels.Conclusion It was suggested that PA may exert its anti-NB effects by inhibiting AKT1,EGFR,and SRC expression,potentially modulating the PI3K/AKT signaling pathway.These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB. 展开更多
关键词 pachymic acid network pharmacology molecular dynamics simulation
在线阅读 下载PDF
Estimation of peer pressure in dynamic homogeneous social networks
17
作者 Jie Liu Pengyi Wang +1 位作者 Jiayang Zhao Yu Dong 《中国科学技术大学学报》 北大核心 2025年第5期36-49,35,I0001,I0002,共17页
Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision p... Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model. 展开更多
关键词 dynamic network game theory HOMOGENEITY peer pressure social interaction
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
18
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
19
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
基于Bi-LSTM模型的网络舆情对旅游业发展动态的影响
20
作者 韩凤彩 吴家雯 李慧彤 《绿色科技》 2025年第15期200-205,共6页
社交媒体普及下,网络舆情深刻影响旅游业,两者形成紧密的动态关联。本研究聚焦于社交媒体时代,以微博淄博旅游评论为例,分析网络舆情与旅游业发展的动态关系。通过收集一定时期内微博评论,运用文本分析方法进行情感倾向与主题挖掘,量化... 社交媒体普及下,网络舆情深刻影响旅游业,两者形成紧密的动态关联。本研究聚焦于社交媒体时代,以微博淄博旅游评论为例,分析网络舆情与旅游业发展的动态关系。通过收集一定时期内微博评论,运用文本分析方法进行情感倾向与主题挖掘,量化舆情关注度指标。采用Bi-LSTM模型进行实证分析,融合RNN与LSTM的优势,精准捕捉舆情与旅游业的复杂关系,提供市场预测与决策支持。结合全连接层分类器,确定文本情感属性。研究结论对理解社交媒体在旅游业发展中的作用具有重要意义,并为旅游管理部门制定基于数据驱动的营销策略提供了科学依据,助力决策者提前预测并应对用户情感倾向。 展开更多
关键词 网络舆情 旅游业 文本分析 bi-lstm模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部