期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
1
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
基于GASF多通道图像时序融合的高速列车横向减振器故障诊断
2
作者 李刚 秦永峰 齐金平 《振动与冲击》 北大核心 2025年第15期144-152,191,共10页
由于高速列车在运行的过程中悬挂系统产生的振动信号是典型的复杂度高,耦合性和不确定性强的非线性信号,为弥补一维信号在故障诊断时的局限性,利用格拉姆角场(Gramian angular field,GAF)处理时间序列信号的敏感性以及对非线性信号的适... 由于高速列车在运行的过程中悬挂系统产生的振动信号是典型的复杂度高,耦合性和不确定性强的非线性信号,为弥补一维信号在故障诊断时的局限性,利用格拉姆角场(Gramian angular field,GAF)处理时间序列信号的敏感性以及对非线性信号的适应性,提出了一种基于一维(1D)时序信号和二维(2D)格拉姆角和场(Gramian angular summation field,GASF)特征融合的卷积神经网络结合门控循环单元网络融合多头自注意力机制(1D-2D-CNN-GRU-MSA)的故障诊断方法。首先,将一维的时序信号编码为二维的GASF图,再分别将一维的时序信号与二维的GASF图同时送入到两条并行的网络支路中,其中:一路为图像输入经卷积神经网络(convolutional neural networks,CNN)提取GASF图像的特征;另一路将一维的故障波形直接输入经门控循环网络单元(gated recurrent unit,GRU)提取时序特征,通过多头自注意力机制(multi-head self-attention,MSA)将二维图像特征和一维时序特征进行特征重点强化并降维融合,最后通过Softmax层对高速列车横向减振器故障进行分类。仿真试验证明,不同工况下1D-2D-CNN-GRU-MSA模型比两种主流模型进行高速列车横向减振器故障识别的准确率高。 展开更多
关键词 高速列车 格拉姆角和场(GASF) 卷积神经网络(CNN) 多头自注意力机制(MSA) 门控循环单元(GRU)
在线阅读 下载PDF
基于通道注意力和门控循环单元的图像去雨算法 被引量:5
3
作者 张焱 张娟 方志军 《计算机应用研究》 CSCD 北大核心 2021年第8期2505-2509,共5页
在计算机视觉领域,雨线或者雨滴会使雨天拍摄的图像变得模糊,降低图像的质量。针对雨天图像质量低下的问题,提出了一种基于通道注意力和门控循环单元的图像去雨算法。该算法基本思路如下:首先将训练图像通过残差记忆模块提取特征;其次... 在计算机视觉领域,雨线或者雨滴会使雨天拍摄的图像变得模糊,降低图像的质量。针对雨天图像质量低下的问题,提出了一种基于通道注意力和门控循环单元的图像去雨算法。该算法基本思路如下:首先将训练图像通过残差记忆模块提取特征;其次将提取的特征通过特征增强模块增加感受野,识别不同等级的雨线特征并将其增强,传递给后续的循环网络;最后网络循环过程中,通过门控循环单元块实现不同循环阶段之间的参数共享。实验结果利用客观评价指标和主观视觉效果进行评估,验证了该算法在较为复杂数据集上的有效性。 展开更多
关键词 图像去雨 通道注意力 门控循环单元 循环神经网络 空洞卷积
在线阅读 下载PDF
基于并行卷积循环网络的单通道语音增强系统 被引量:6
4
作者 李鑫元 黄鹤鸣 《计算机工程与设计》 北大核心 2023年第4期1181-1188,共8页
为提升语音增强系统的收敛速度和泛化性,降低对训练数据的要求,提出一种基于并行卷积循环网络的语音增强系统。在卷积循环网络的基础上,使用归一化门控线性单元提升性能和收敛速度;使用并行循环层结构同时处理原始语音特征和经过编码器... 为提升语音增强系统的收敛速度和泛化性,降低对训练数据的要求,提出一种基于并行卷积循环网络的语音增强系统。在卷积循环网络的基础上,使用归一化门控线性单元提升性能和收敛速度;使用并行循环层结构同时处理原始语音特征和经过编码器处理后的语音特征,通过后处理模块处理并行结构的输出。在THCHS30和LibriSpeech语音库及NOISEX92和PNL100 NS噪声库上的实验结果表明,与多个目前最先进的语音增强系统相比,该方法获得了最高36.92%的性能提升和62.36%的收敛速度提升。 展开更多
关键词 语音增强 通道语音增强 深度学习 卷积循环网络 并行网络 门控线性单元 低资源训练
在线阅读 下载PDF
一种融合时空特征的物联网入侵检测方法 被引量:1
5
作者 翁铜铜 矫桂娥 张文俊 《信息安全研究》 北大核心 2025年第3期241-248,共8页
针对不平衡的物联网流量数据集中攻击样本不足且类别较多降低了检测模型的分类准确率和泛化能力等问题,提出一种融合时空特征的物联网入侵检测方法(BGAREU).首先对数据进行规范化处理,并采用SMOTEENN方法改善训练样本的数据分布;然后通... 针对不平衡的物联网流量数据集中攻击样本不足且类别较多降低了检测模型的分类准确率和泛化能力等问题,提出一种融合时空特征的物联网入侵检测方法(BGAREU).首先对数据进行规范化处理,并采用SMOTEENN方法改善训练样本的数据分布;然后通过双向门控循环单元(BiGRU)和多头注意力(multi-head attention)提取时序特征和全局信息,并结合ResNext网络和U-Net网络构建多尺度的空间特征提取网络,再将高效通道注意力(ECA-Net)加入残差单元中以增强局部表征能力;最后将融合的特征输入Softmax分类器进行多分类.实验表明,在物联网流量数据集UNSW-NB15,NSL-KDD,WSN-DS上与其他模型相比,该模型在各项指标上均有2%以上的提升.此外,还通过对比多种注意力机制验证了ECA-Net具有更强的表征能力,并探索了多头注意力中不同数量的注意力头对模型性能的影响. 展开更多
关键词 入侵检测 双向门控循环单元 多头注意力 多尺度特征提取 高效通道注意力
在线阅读 下载PDF
基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析 被引量:47
6
作者 程艳 尧磊波 +5 位作者 张光河 唐天伟 项国雄 陈豪迈 冯悦 蔡壮 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2583-2595,共13页
近年来,卷积神经网络(convolutional neural network,CNN)和循环神经网络(recurrent neural network,RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信... 近年来,卷积神经网络(convolutional neural network,CNN)和循环神经网络(recurrent neural network,RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信息,但是会忽略词语之间上下文语义信息;双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络不仅能够解决传统RNN模型存在的梯度消失或梯度爆炸问题,而且还能很好地弥补CNN不能有效提取长文本的上下文语义信息的缺陷,但却无法像CNN那样很好地提取句子局部特征.因此提出一种基于注意力机制的多通道CNN和双向门控循环单元(MC-AttCNN-AttBiGRU)的神经网络模型.该模型不仅能够通过注意力机制关注到句子中对情感极性分类重要的词语,而且结合了CNN提取文本局部特征和BiGRU网络提取长文本上下文语义信息的优势,提高了模型的文本特征提取能力.在谭松波酒店评论数据集和IMDB数据集上的实验结果表明:提出的模型相较于其他几种基线模型可以提取到更丰富的文本特征,可以取得比其他基线模型更好的分类效果. 展开更多
关键词 卷积神经网络 文本情感倾向性分析 双向门控循环单元 注意力机制 通道
在线阅读 下载PDF
基于MultiCNN-GRU-ITA的动车组牵引电机温度预测模型 被引量:1
7
作者 王运明 李明阳 +1 位作者 陈梦华 常振臣 《铁道科学与工程学报》 北大核心 2025年第5期2367-2379,共13页
牵引电机温度预测在动车组牵引电机状态评估和日常维护中具有重要作用。针对现有时序预测模型提取牵引电机时序数据的特征不充分,导致模型预测精度不高的问题,提出一种基于MultiCNN-GRU-ITA的动车组牵引电机温度预测模型,通过更深层次... 牵引电机温度预测在动车组牵引电机状态评估和日常维护中具有重要作用。针对现有时序预测模型提取牵引电机时序数据的特征不充分,导致模型预测精度不高的问题,提出一种基于MultiCNN-GRU-ITA的动车组牵引电机温度预测模型,通过更深层次地提取数据的时空特征来预测牵引电机的温度。该模型提出了多通道卷积神经网络(multi-channel convolutional neural networks, MultiCNN)的空间特征提取模块,多尺度地获取牵引电机数据的空间特征,增强特征的表征能力;设计了GRU(gated recurrent unit, GRU)堆叠的时间特征提取模块,采用门控循环单元捕捉数据的长期依赖关系,提取牵引电机数据的时间特征,更准确地预测温度的动态变化;引入改进的时序注意力机制模块(improved temporal attention,ITA),聚焦时空特征中的关键信息,进一步提升模型对重要特征的识别能力。利用动车组实际运行数据制作了数据集,并在多种预测场景下进行了实验测试。实验结果表明,在预测输出步长为5、10、15、20 min的4种场景下,MultiCNN-GRUITA模型在MAE和MSE方面均表现出明显的优势,相比于LSTM、GRU、SVR、ARIMA模型,MAE和MSE指标降低了41.03%和65.32%以上;在不同预测步长下,MultiCNN-GRU-ITA模型的温度预测曲线与实际值具有很高的拟合度,该模型能有效捕捉牵引电机的温度变化趋势,可为构建高精确性的牵引电机故障预测与健康评估系统提供模型支撑。 展开更多
关键词 牵引电机 温度预测 通道卷积神经网络 门控循环单元 注意力机制
在线阅读 下载PDF
基于改进GRU模型的高速公路短时交通量预测 被引量:8
8
作者 温惠英 元昱青 赵胜 《广西大学学报(自然科学版)》 CAS 北大核心 2023年第2期459-468,共10页
为了提高短时交通流的预测精度,采用灰狼算法(grey wolf optimizer,GWO)优化门控循环单元(gate recurrent unit,GRU)神经网络参数,构建基于超参数自适应寻优的高速公路短时交通流量预测模型,提取交通流的时变特征,准确预测短时交通流量... 为了提高短时交通流的预测精度,采用灰狼算法(grey wolf optimizer,GWO)优化门控循环单元(gate recurrent unit,GRU)神经网络参数,构建基于超参数自适应寻优的高速公路短时交通流量预测模型,提取交通流的时变特征,准确预测短时交通流量。选取高速公路出口匝道交通数据作为实验数据输入,基于TensorFlow为后端的Keras完成GWO-GRU模型框架的搭建,并与支持向量回归算法(support vector regression,SVR)、K近邻算法(k-nearest neighbor,KNN)、长短期记忆神经网络(long-short term memory,LSTM)、门控循环单元(GRU)模型进行对比分析。实验结果表明,在3种不同时间间隔的高速公路匝道交通数据集的预测中,改进后的GRU模型具有较好的预测性能,其平均绝对误差(mean absolute error,MAE)比次优模型分别减小了9.22%、8.54%、8.03%。 展开更多
关键词 高速公路 短时交通量预测 灰狼算法 超参数自适应优化 门控循环单元神经网络
在线阅读 下载PDF
融合特征信息和改进BiGRU的池塘养殖溶解氧预测模型
9
作者 李雯 施珮 《农业工程学报》 北大核心 2025年第19期218-226,共9页
养殖池塘水体参数的深层特征分析和研究,有助于提高溶解氧预测的准确性和效率。为了挖掘影响溶解氧预测关键环境特征,实现精准水产养殖,该研究提出了一种融合特征信息、残差网络(residual network,ResNet)和SENet改进双向门控循环单元(b... 养殖池塘水体参数的深层特征分析和研究,有助于提高溶解氧预测的准确性和效率。为了挖掘影响溶解氧预测关键环境特征,实现精准水产养殖,该研究提出了一种融合特征信息、残差网络(residual network,ResNet)和SENet改进双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的溶解氧预测模型。首先,基于水温与溶解氧变化的时滞耦合关系,构造水环境特征量,分析特征交互信息,提高原始样本集的表征能力。其次,利用ResNet提取溶解氧时间序列数据中的特征,挖掘各因素与溶解氧之间的深层次关联,通过在ResNet中融合SENet通道注意力机制,增强关键特征的重要性,实现动态自适应的通道重要性调整策略。最后,引入该策略到BiGRU预测模型中,捕捉溶解氧时间序列的前向和后向信息,构建基于FRS-BiGRU的溶解氧预测模型,并在无锡市南泉养殖试验基地的两口池塘分别进行溶解氧预测泛化性测试。结果表明,该研究所提模型的均方根误差、平均绝对误差和决定系数分别为0.112 2 mg/L、0.076 2 mg/L和0.996 0,与当前主流的长短期记忆网络、门控循环单元等模型相比,其均方根误差分别降低了57.44%和49.32%。该研究所提出的模型具有较好的预测精度,能够为池塘养殖溶解氧的预警和调控提供一定的理论依据。 展开更多
关键词 溶解氧预测 水产养殖 特征构造 双向门控循环单元 通道注意力
在线阅读 下载PDF
基于BERT和双通道注意力的文本情感分类模型 被引量:27
10
作者 谢润忠 李烨 《数据采集与处理》 CSCD 北大核心 2020年第4期642-652,共11页
对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新... 对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型。基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达。实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优。 展开更多
关键词 文本情感分析 深度学习 基于变换器的双向编码器表征技术 通道 注意力 双向门控循环单元
在线阅读 下载PDF
基于分层注意力循环神经网络的司法案件刑期预测 被引量:1
11
作者 李大鹏 赵琪珲 +1 位作者 邢铁军 赵大哲 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第3期344-349,共6页
为了解决刑期预测任务准确率较差的问题,提出一种基于多通道分层注意力循环神经网络的司法案件刑期预测模型.该模型对传统的循环神经网络模型进行了改进,引入了BERT词嵌入、多通道模式和分层注意力机制,将刑期预测转化为文本分类问题.... 为了解决刑期预测任务准确率较差的问题,提出一种基于多通道分层注意力循环神经网络的司法案件刑期预测模型.该模型对传统的循环神经网络模型进行了改进,引入了BERT词嵌入、多通道模式和分层注意力机制,将刑期预测转化为文本分类问题.模型采用分层的双向循环神经网络对案件文本进行建模,并通过分层注意力机制在词语级和句子级两个层面捕获不同词语和句子的重要性,最终生成有效表征案件文本的多通道嵌入向量.实验结果表明:对比现有的基于深度学习的刑期预测模型,本文提出的模型具有更高的预测性能. 展开更多
关键词 刑期预测 分层注意力机制 双向门控循环单元 通道 文本分类
在线阅读 下载PDF
融合多通道CNN与BiGRU的字词级文本错误检测模型 被引量:4
12
作者 郭可翔 王衡军 白祉旭 《计算机工程》 CAS CSCD 北大核心 2022年第9期63-70,共8页
文本校对是自然语言处理领域的重要分支。深度学习技术因强大的特征提取与学习能力被广泛应用于中文文本校对任务。针对现有中文文本错误检测模型忽略句子连续词间的局部信息、对于长文本的上下文语义信息提取不充分等问题,提出一种基... 文本校对是自然语言处理领域的重要分支。深度学习技术因强大的特征提取与学习能力被广泛应用于中文文本校对任务。针对现有中文文本错误检测模型忽略句子连续词间的局部信息、对于长文本的上下文语义信息提取不充分等问题,提出一种基于多通道卷积神经网络(CNN)与双向门控循环单元(BiGRU)的字词级文本错误检测模型。利用Word2vec向量化待检错文本,采用CNN挖掘待检错文本的局部特征,使用BiGRU学习待检错文本的上下文语义信息及长时依赖关系,并通过Softmax处理后输出文本分类结果以判断文本中是否含有字词错误,同时采取L2正则化和dropout策略防止模型过拟合。在SIGHAN2014和SIGHAN2015中文拼写检查任务数据集上的实验结果表明,与基于长短时记忆网络的文本错误检测模型相比,该模型的检错F1值提升了3.01个百分点,具有更优的字词级文本错误检测效果。 展开更多
关键词 字词错误 通道卷积操作 卷积神经网络 双向门控循环单元 文本错误检测
在线阅读 下载PDF
基于深度学习的高速铁路工务安全指数预测技术 被引量:3
13
作者 柴雪松 凌烈鹏 +1 位作者 周游 王萌瑶 《中国铁路》 2022年第12期94-98,共5页
高速铁路工务安全指数(HRPSI)反映了高速铁路工务故障和事故的发生状况,对其进行规律验证与预测对于高速铁路工务专业进行安全评估和预测具有非常重要的现实意义。基于高速铁路10周年工务安全指数数据,构建2种深度学习的时间序列预测模... 高速铁路工务安全指数(HRPSI)反映了高速铁路工务故障和事故的发生状况,对其进行规律验证与预测对于高速铁路工务专业进行安全评估和预测具有非常重要的现实意义。基于高速铁路10周年工务安全指数数据,构建2种深度学习的时间序列预测模型。利用皮尔森系数预测模型的有效性证明构建2种模型的有效性。其中门控循环单元(GRU)预测方法效果更好,训练集和测试集的皮尔森系数分别为0.9371和0.9221,可有效预测工务安全指数变化趋势。 展开更多
关键词 高速铁路 深度学习 统计分析 高速铁路工务安全指数 门控循环单元 长短期记忆神经网络
在线阅读 下载PDF
基于多任务双层注意力优化的TCN-BiGRU综合能源负荷短期预测 被引量:2
14
作者 倪建辉 张菁 《控制工程》 CSCD 北大核心 2024年第11期1924-1936,共13页
基于多元负荷预测是综合能源系统(IES)生产计划和能源调度的前提,提出一种基于多任务双层注意力优化的时序卷积网络与双向门控循环单元相结合(TCN-BiGRU)的综合能源负荷短期预测方法。首先,将特征集通过最大互信息系数法进行相关性分析... 基于多元负荷预测是综合能源系统(IES)生产计划和能源调度的前提,提出一种基于多任务双层注意力优化的时序卷积网络与双向门控循环单元相结合(TCN-BiGRU)的综合能源负荷短期预测方法。首先,将特征集通过最大互信息系数法进行相关性分析,构建不同负荷的输入特征集;然后,输入多任务学习平台进行离线训练,其中的共享层采用高效通道注意力网络(ECANet)优化的TCN,特定任务层则采用自注意力机制优化的BiGRU;最后,选取亚利桑那州立大学坦佩校区冬季和夏季典型日的实际数据进行在线测试。测试结果表明,对比多种深度神经网络模型,所提方法在冬季和夏季的多元负荷加权平均绝对百分比误差分别最大降低了69.35%和73.26%,加权均方根误差分别最大降低70.11%和79.46%。 展开更多
关键词 多元负荷短期预测 最大互信息系数 多任务学习 时序卷积网络 双向循环门控单元 高效通道注意力网络
在线阅读 下载PDF
基于QWDAE和HWMHGRU融合的电力系统短期负荷预测模型 被引量:5
15
作者 李文升 孙东磊 +3 位作者 郑志杰 梁荣 王凇瑶 张智晟 《电力系统及其自动化学报》 CSCD 北大核心 2023年第9期62-67,共6页
为提升电力系统短期负荷预测精度,提出量子加权降噪自编码器和高速通道多层级门控循环单元神经网络融合的短期负荷预测模型。首先利用量子信息处理机制,采用量子加权神经元构建量子加权降噪自编码器,挖掘负荷序列中的有效信息作为输入特... 为提升电力系统短期负荷预测精度,提出量子加权降噪自编码器和高速通道多层级门控循环单元神经网络融合的短期负荷预测模型。首先利用量子信息处理机制,采用量子加权神经元构建量子加权降噪自编码器,挖掘负荷序列中的有效信息作为输入特征;然后提出具有两级门控结构和高速通道结构的高速通道多层级门控循环单元,构成量子加权降噪自编码器和高速通道多层级门控循环单元融合的短期负荷预测模型。仿真结果表明,所提模型具有较好的预测精度和预测稳定性。 展开更多
关键词 高速通道多层级门控循环单元 量子加权降噪自编码器 短期负荷预测 电力系统
在线阅读 下载PDF
多注意力机制网络的调制识别算法
16
作者 王安义 王煜仪 《计算机工程与设计》 北大核心 2023年第2期328-334,共7页
针对小尺度衰落信道下调制信号识别率低的问题,提出一种基于多注意力机制网络的调制识别算法。提取信号瞬时幅度/相位特征与同相/正交序列构建双通道输入方式,实现多尺度感受野。通过残差密集块提取双通道数据的频域特征,将特征向量融... 针对小尺度衰落信道下调制信号识别率低的问题,提出一种基于多注意力机制网络的调制识别算法。提取信号瞬时幅度/相位特征与同相/正交序列构建双通道输入方式,实现多尺度感受野。通过残差密集块提取双通道数据的频域特征,将特征向量融合后送入双向门控循环单元提取时域信息,引入改进卷积注意力机制模块和软注意力机制捕捉信号的关键特征,构建多注意力机制网络对BPSK、QPSK、8PSK、16PSK、PAM4、GMSK、CPFSK、16QAM、64QAM这9种信号进行调制识别。仿真结果表明,信噪比大于10 dB时,9种信号平均识别率达89.2%以上,与其它深度学习算法相比具有更高的识别率,验证了该算法的有效性。 展开更多
关键词 调制识别 小尺度衰落信道 瞬时幅度/相位 通道输入 残差密集块 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于改进BiGRU-CNN的中文文本分类方法 被引量:16
17
作者 陈可嘉 刘惠 《计算机工程》 CAS CSCD 北大核心 2022年第5期59-66,73,共9页
传统的自注意力机制可以在保留原始特征的基础上突出文本的关键特征,得到更准确的文本特征向量表示,但忽视了输入序列中各位置的文本向量对输出结果的贡献度不同,导致在权重分配上存在偏离实际的情况,而双向门控循环单元(BiGRU)网络在... 传统的自注意力机制可以在保留原始特征的基础上突出文本的关键特征,得到更准确的文本特征向量表示,但忽视了输入序列中各位置的文本向量对输出结果的贡献度不同,导致在权重分配上存在偏离实际的情况,而双向门控循环单元(BiGRU)网络在对全局信息的捕捉上具有优势,但未考虑到文本间存在的局部依赖关系。针对上述问题,提出一种基于改进自注意力机制的BiGRU和多通道卷积神经网络(CNN)文本分类模型SAttBiGRUMCNN。通过BiGRU对文本序列的全局信息进行捕捉,得到文本的上下文语义信息,利用优化的多通道CNN提取局部特征,弥补BiGRU忽视局部特征的不足,在此基础上对传统的自注意力机制进行改进,引入位置权重参数,根据文本向量训练的位置,对计算得到的自注意力权重概率值进行重新分配,并采用softmax得到样本标签的分类结果。在两个标准数据集上的实验结果表明,该模型准确率分别达到98.95%和88.1%,相比FastText、CNN、RCNN等分类模型,最高提升了8.99、7.31个百分点,同时精确率、召回率和F1值都有较好表现,取得了更好的文本分类效果。 展开更多
关键词 自注意力机制 双向门控循环单元 通道卷积神经网络 文本分类 深度学习
在线阅读 下载PDF
用于基于方面情感分析的RCNN-BGRU-HN网络模型 被引量:4
18
作者 孙中锋 王静 《计算机科学》 CSCD 北大核心 2019年第9期223-228,共6页
针对一般神经网络模型在处理基于方面情感分析任务中存在的句子间相互联系少以及单词之间的语义信息获取有限等问题,文中提出了一种新型结构的深度学习网络模型。该模型通过区域卷积神经网络(RCNN)可以很好地保留评论文本中句子的时序关... 针对一般神经网络模型在处理基于方面情感分析任务中存在的句子间相互联系少以及单词之间的语义信息获取有限等问题,文中提出了一种新型结构的深度学习网络模型。该模型通过区域卷积神经网络(RCNN)可以很好地保留评论文本中句子的时序关系,同时结合双向门控循环单元(BGRU)可以大大降低模型训练的时间代价。此外,加入的高速公路网络(HN)使得该模型能够捕获更多单词间的语义信息;利用注意力机制来分配网络结构中特定方面的权重,可以有效获取特定方面在整个评论文本中的长距离依赖关系。该模型可以进行端到端的训练,在不同的数据集上取得了比现有网络模型更好的分类效果。 展开更多
关键词 深度学习 基于方面情感分析 卷积神经网络 双向门控循环单元 高速公路网络 注意力机制
在线阅读 下载PDF
基于GRU和改进注意力机制的多信息融合的EMA故障诊断方法
19
作者 彭朝琴 李奇聪 +1 位作者 陈娟 马纪明 《北京航空航天大学学报》 2025年第11期3734-3744,共11页
针对传统基于机器学习和深度学习的机电伺服系统(EMA)故障诊断方法存在时序特征丢失、故障信息丢失的问题,提出一种基于门控循环单元(GRU)和改进注意力机制的多信息融合的EMA故障诊断方法。将采集的不同传感器信号分为不同通道,通过GRU... 针对传统基于机器学习和深度学习的机电伺服系统(EMA)故障诊断方法存在时序特征丢失、故障信息丢失的问题,提出一种基于门控循环单元(GRU)和改进注意力机制的多信息融合的EMA故障诊断方法。将采集的不同传感器信号分为不同通道,通过GRU提取每个通道信号的时序特征,再引入自注意力机制进一步分辨信号不同时间点之间的重要关系,进一步引入多通道注意力机制自适应融合不同通道的特征,通过分类器实现故障诊断。基于测试试验台数据集的试验结果表明:所提方法与单传感器的模型相比,诊断准确率提升10%;与不引入注意力机制的模型相比,诊断准确率提升5.2%;与经典的机器学习、深度学习和近两年基于深度学习的改进算法相比,所提方法的诊断准确率在98.5%以上,诊断效果最优。 展开更多
关键词 门控循环单元 多源信息融合 自注意力机制 通道注意力机制 机电伺服系统 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部