期刊文献+

基于深度学习的高速铁路工务安全指数预测技术 被引量:2

Deep-Learning-Based High-speed Railway Permanent-way Safety Index Prediction Technology
在线阅读 下载PDF
导出
摘要 高速铁路工务安全指数(HRPSI)反映了高速铁路工务故障和事故的发生状况,对其进行规律验证与预测对于高速铁路工务专业进行安全评估和预测具有非常重要的现实意义。基于高速铁路10周年工务安全指数数据,构建2种深度学习的时间序列预测模型。利用皮尔森系数预测模型的有效性证明构建2种模型的有效性。其中门控循环单元(GRU)预测方法效果更好,训练集和测试集的皮尔森系数分别为0.9371和0.9221,可有效预测工务安全指数变化趋势。 High‑speed Railway Permanent‑way Safety Index(HRPSI)reflects the occurrence of HSR permanent way faults and accidents,and its regular verification and prediction are of great practical significance for the safety evaluation and prediction for HSR permanent way.Based on the HRPSI data of the last ten years,two time-series prediction models for deep learning are established.The validity of the Pearson coefficient prediction model is used to prove the validity of the two models.Among them,the prediction method GRU has better effect,and the Pearson coefficients of training set and test set are 0.9371 and 0.9221 respectively,which proves that it can effectively predict the change trend of HRPSI.
作者 柴雪松 凌烈鹏 周游 王萌瑶 CHAI Xuesong;LING Liepeng;ZHOU You;WANG Mengyao(Railway Engineering Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;School of Mathematics and Statistics,Beijing Jiaotong University,Beijing 100091,China)
出处 《中国铁路》 2022年第12期94-98,共5页 China Railway
关键词 高速铁路 深度学习 统计分析 高速铁路工务安全指数 门控循环单元 长短期记忆神经网络 high speed railway deep learning statistical analysis HRPSI GRU LSTM
作者简介 第一作者:柴雪松(1973-),男,研究员,博士。E-mail:chaixs@sina.com;通信作者:周游(1991-),男,助理研究员,硕士。E-mail:polime@126.com。
  • 相关文献

参考文献4

二级参考文献23

共引文献35

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部