为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建...为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。展开更多
针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随...针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随机游走算法实现MCMC模拟的传统方法基础上,引入差分进化算法,利用种群中Markov链之间不同携带信息的相互作用关系,得到优化建议以快速逼近目标函数,解决了高维参数模型修正过程中采样滞留的缺点;引进竞争算法,通过不断的竞争刺激和内置失败者向胜利者学习的机制,采用较少的Markov链获得较高的精度,提高了模型修正效率与精度;最后,通过一个桁架结构的有限元模型修正数值算例验证了所提算法,并与标准MH算法的结果对比,得出该算法可以快速修正高维参数模型,具有较高的精度,且对随机噪声有良好的鲁棒性,为考虑不确定性的大型结构有限元模型修正提供了一种稳定有效的手段。展开更多
通过Jeffreys无信息先验分布描述了Gamma退化过程中参数的相关性,由贝叶斯模型得到各参数满条件分布,使用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法得到参数后验期望估计,最后给出可靠度评价模型。工程实例表明,所得可靠...通过Jeffreys无信息先验分布描述了Gamma退化过程中参数的相关性,由贝叶斯模型得到各参数满条件分布,使用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法得到参数后验期望估计,最后给出可靠度评价模型。工程实例表明,所得可靠性评估较独立情形更为保守,能够更早地给出产品修理建议。同时,仿真表明,可靠度要求越高,相关与独立情形寿命估计结果偏差越大,0.9999可靠度下偏差率最大可达9.26%。展开更多
处理不平衡数据分类时,传统模糊系统对少数类样本识别率较低.针对这一问题,首先,在前件参数学习上,提出了竞争贝叶斯模糊聚类(Bayesian fuzzy clustering based on competitive learning,BFCCL)算法,BFCCL算法考虑不同类别样本聚类中心...处理不平衡数据分类时,传统模糊系统对少数类样本识别率较低.针对这一问题,首先,在前件参数学习上,提出了竞争贝叶斯模糊聚类(Bayesian fuzzy clustering based on competitive learning,BFCCL)算法,BFCCL算法考虑不同类别样本聚类中心间的排斥作用,采用交替迭代的执行方式并通过马尔科夫蒙特卡洛方法获得模型参数最优解.其次,在后件参数学习上,基于大间隔的策略并通过参数调节使得少数类到分类面的距离大于多数类到分类面的距离,该方法能有效纠正分类面的偏移.基于上述思想以0阶TSK型模糊系统为具体研究对象构造了适用于不平衡数据分类问题的0阶TSK型模糊系统(0-TSK-IDC).人工和真实医学数据集实验结果表明,0-TSK-IDC在不平衡数据分类问题中对少数类和多数类均具有较高的识别率,且具有良好的鲁棒性和可解释性.展开更多
基于机场建设工程实践中的工作分解结构及跟踪数据,根据工程不同子系统延期工作发生频数分布,从总体角度、系统角度刻画总进度计划延期风险;针对机场工程总进度计划进度违约数据数量少、获取难度大的特点,采用贝叶斯方法估计分布参数,...基于机场建设工程实践中的工作分解结构及跟踪数据,根据工程不同子系统延期工作发生频数分布,从总体角度、系统角度刻画总进度计划延期风险;针对机场工程总进度计划进度违约数据数量少、获取难度大的特点,采用贝叶斯方法估计分布参数,使用马尔科夫蒙特卡洛(Markov chain Monte Carlo,MCMC)模拟实现贝叶斯方法的计算。研究展示了从项目整体和宏观角度刻画机场建设工程不同子系统延期风险的途径;不同分布模型的MCMC参数估计结果显示出稳健性优势。同时,贝叶斯方法的应用能够集成定性数据和实践经验,并允许该模型的持续更新和优化。展开更多
文摘为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。
文摘针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随机游走算法实现MCMC模拟的传统方法基础上,引入差分进化算法,利用种群中Markov链之间不同携带信息的相互作用关系,得到优化建议以快速逼近目标函数,解决了高维参数模型修正过程中采样滞留的缺点;引进竞争算法,通过不断的竞争刺激和内置失败者向胜利者学习的机制,采用较少的Markov链获得较高的精度,提高了模型修正效率与精度;最后,通过一个桁架结构的有限元模型修正数值算例验证了所提算法,并与标准MH算法的结果对比,得出该算法可以快速修正高维参数模型,具有较高的精度,且对随机噪声有良好的鲁棒性,为考虑不确定性的大型结构有限元模型修正提供了一种稳定有效的手段。
文摘通过Jeffreys无信息先验分布描述了Gamma退化过程中参数的相关性,由贝叶斯模型得到各参数满条件分布,使用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法得到参数后验期望估计,最后给出可靠度评价模型。工程实例表明,所得可靠性评估较独立情形更为保守,能够更早地给出产品修理建议。同时,仿真表明,可靠度要求越高,相关与独立情形寿命估计结果偏差越大,0.9999可靠度下偏差率最大可达9.26%。
文摘处理不平衡数据分类时,传统模糊系统对少数类样本识别率较低.针对这一问题,首先,在前件参数学习上,提出了竞争贝叶斯模糊聚类(Bayesian fuzzy clustering based on competitive learning,BFCCL)算法,BFCCL算法考虑不同类别样本聚类中心间的排斥作用,采用交替迭代的执行方式并通过马尔科夫蒙特卡洛方法获得模型参数最优解.其次,在后件参数学习上,基于大间隔的策略并通过参数调节使得少数类到分类面的距离大于多数类到分类面的距离,该方法能有效纠正分类面的偏移.基于上述思想以0阶TSK型模糊系统为具体研究对象构造了适用于不平衡数据分类问题的0阶TSK型模糊系统(0-TSK-IDC).人工和真实医学数据集实验结果表明,0-TSK-IDC在不平衡数据分类问题中对少数类和多数类均具有较高的识别率,且具有良好的鲁棒性和可解释性.
文摘基于机场建设工程实践中的工作分解结构及跟踪数据,根据工程不同子系统延期工作发生频数分布,从总体角度、系统角度刻画总进度计划延期风险;针对机场工程总进度计划进度违约数据数量少、获取难度大的特点,采用贝叶斯方法估计分布参数,使用马尔科夫蒙特卡洛(Markov chain Monte Carlo,MCMC)模拟实现贝叶斯方法的计算。研究展示了从项目整体和宏观角度刻画机场建设工程不同子系统延期风险的途径;不同分布模型的MCMC参数估计结果显示出稳健性优势。同时,贝叶斯方法的应用能够集成定性数据和实践经验,并允许该模型的持续更新和优化。