期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于集成精细复合多元多尺度模糊熵的齿轮箱故障诊断 被引量:1
1
作者 杨小强 宫建成 +1 位作者 安立周 刘晓明 《机电工程》 CAS 北大核心 2023年第3期335-343,共9页
针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模... 针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模糊熵(ERCmvMFE)算法,在此基础上,结合t分布随机邻域嵌入(t-SNE)和人工鱼群算法优化的核极限学习机(AFSA-KELM),提出了一种新的齿轮箱故障综合诊断方法。首先,采用多种形式粗粒化方法的集成方法以及多通道信号处理方法,对模糊熵算法进行了改进,并进行了齿轮箱故障的初始特征提取;然后,通过t-SNE压缩原始故障特征,实现了维数的约简,并将低维故障特征输入至AFSA-KELM中进行了故障的分类识别;最后,为了对ERCmvMFE方法的特征提取性能进行测试,采用QPZZ-II旋转机械故障模拟测试平台进行了相关的实验。实验结果表明:采用新的齿轮箱故障综合诊断方法能够对不同类型的齿轮箱故障进行可靠诊断,对齿轮箱5种工况下的20次识别实验中,获得的平均准确率可达98.92%,标准差为0.956,识别准确率和稳定性均优于其他对比方法。研究结果表明:采用ERCmvMFE算法能够更充分地提取出齿轮箱的故障特征,因此,基于该特征提取方法的故障诊断方法具有更高的齿轮箱故障识别准确率。 展开更多
关键词 集成精细复合多元多尺度模糊熵 人工鱼群算法优化的核极限学习机 t分布随机邻域嵌入 特征提取 多粗粒化处理 多通道信号处理 故障分类识别
在线阅读 下载PDF
基于精细复合多元多尺度散布熵和深度残差收缩网络的轴向柱塞泵故障诊断
2
作者 储焰 常远 汤何胜 《机床与液压》 北大核心 2025年第6期142-147,共6页
为了克服单传感器振动信息不能全面表达柱塞泵故障特征信息的问题,提出一种新的轴向柱塞泵故障诊断方法,将精细复合多元多尺度散布熵(RCMMDE)嵌入深度残差收缩网络(DRSN)框架中,更精确地提取轴向柱塞泵非线性故障特征。通过RCMMDE全面... 为了克服单传感器振动信息不能全面表达柱塞泵故障特征信息的问题,提出一种新的轴向柱塞泵故障诊断方法,将精细复合多元多尺度散布熵(RCMMDE)嵌入深度残差收缩网络(DRSN)框架中,更精确地提取轴向柱塞泵非线性故障特征。通过RCMMDE全面表征轴向柱塞泵故障信息,构建故障特征集;利用DRSN对轴向柱塞泵的故障进行分类;最后,通过轴向柱塞泵故障模拟实验,获取典型故障信号特征,并与其他智能诊断算法进行对比,验证模型的泛化能力,实现柱塞泵故障特征的精准识别。结果表明:随着尺度因子的增大,RCMMDE可实现轴向柱塞泵微弱故障特征的有效分离;DRSN模型提高了对高噪声振动信号的特征学习能力,故障诊断精度达到96.21%,明显优于其他分类算法。 展开更多
关键词 轴向柱塞泵 故障诊断 精细复合多多尺度散布(RCMMDE) 深度残差收缩网络(DRSN)
在线阅读 下载PDF
精细广义复合多元多尺度反向散布熵及其在滚动轴承故障诊断中的应用 被引量:12
3
作者 郑近德 陈焱 +1 位作者 童靳于 潘海洋 《中国机械工程》 EI CAS CSCD 北大核心 2023年第11期1315-1325,共11页
多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道... 多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中,提出了精细广义复合多元多尺度反向散布熵(RGCMvMRDE)。在此基础上,提出了一种基于RGCMvMRDE与引力搜索算法优化支持向量机(GSA-SVM)的滚动轴承故障诊断方法。首先,利用RGCMvMRDE全面表征滚动轴承故障特征信息,构建故障特征集;其次,采用GSA-SVM对故障类型进行智能识别;最后,将所提方法应用于滚动轴承实验数据分析,并将其与现有基于多尺度反向散布熵、广义多尺度反向散布熵和精细复合多元多尺度排列熵的故障特征提取方法进行了对比。研究结果表明,所提RGCMvMRDE不仅能够有效和精准地诊断轴承的不同故障类型和故障程度,且诊断效果优于上述对比方法。 展开更多
关键词 精细广义复合多多尺度反向散布 滚动轴承 故障诊断 特征提取
在线阅读 下载PDF
基于精细复合多尺度模糊熵的往复压缩机轴承间隙故障特征分析方法 被引量:16
4
作者 王金东 陈新 +3 位作者 赵海洋 贾川 陈桂娟 雷勇 《机床与液压》 北大核心 2021年第16期185-190,共6页
针对往复压缩机故障信号呈现非线性、非平稳等特点,提出了基于精细复合多尺度模糊熵(RCMFE)的往复压缩机轴承间隙故障特征提取方法。在精细复合多尺度熵的基础上,结合模糊熵概念,提出了RCMFE方法,应用其量化信号非线性特性形成故障特征... 针对往复压缩机故障信号呈现非线性、非平稳等特点,提出了基于精细复合多尺度模糊熵(RCMFE)的往复压缩机轴承间隙故障特征提取方法。在精细复合多尺度熵的基础上,结合模糊熵概念,提出了RCMFE方法,应用其量化信号非线性特性形成故障特征。白噪声和1/f噪声仿真信号分析结果表明:RCMFE熵值对数据长度不敏感,未定义熵出现概率小。以往复压缩机传动机构轴承间隙故障为研究对象,应用RCMFE实现其故障信号特征提取,并与多尺度模糊熵、复合多尺度模糊熵进行对比,该方法特征区分度显著,支持向量机故障识别准确率高于其他方法。 展开更多
关键词 精细复合多尺度模糊 往复压缩机 滑动轴承 故障诊断
在线阅读 下载PDF
基于CEEMDAN-精细复合多尺度熵和Stacking集成学习的短期风电功率预测 被引量:6
5
作者 康文豪 徐天奇 +2 位作者 王阳光 邓小亮 李琰 《水利水电技术(中英文)》 北大核心 2022年第2期163-172,共10页
为了解决风电功率的间歇性与非平稳性带来的功率预测难度,提出了一种基于CEEMDAN-精细复合多尺度熵和Stacking集成学习的短期风电功率预测方法。在对风电功率进行预测之前,对风电功率数据进行预处理。首先引入自适应噪声完备集合经验模... 为了解决风电功率的间歇性与非平稳性带来的功率预测难度,提出了一种基于CEEMDAN-精细复合多尺度熵和Stacking集成学习的短期风电功率预测方法。在对风电功率进行预测之前,对风电功率数据进行预处理。首先引入自适应噪声完备集合经验模态分解(CEEMDAN)方法分解风电功率原始序列,并计算各分解分量的精细复合多尺度熵(RCMSE)。然后,将熵值相近的分量序列重组成新序列,以降低模型复杂度和提高计算效率。在预测阶段,对重组之后的序列分别建立Stacking集成学习模型进行风电功率短期预测,最后对预测结果进行重组。通过新疆某风电场实测数据证明:结合各单一预测模型优点的Stacking集成学习模型方法与其4种基学习器KNN、RF、SVR和ANN相比,Stacking模型具有更高的风电预测准确度。在同等条件下,CEEMDAN-RCMSE-Stacking模型均方根误差相比单一的Stacking模型及EMD-RCMSE-Stacking模型分别减少了20.34%和9.74%,平均绝对误差分别减少了24.55%和6.35%,而拟合优度系数分别提高了4.09%和1.62%,即CEEMDAN-RCMSE-Stacking模型拥有更高的预测性能。 展开更多
关键词 短期风电功率预测 CEEMDAN 精细复合多尺度 Stacking集成学习 影响因素 新能源 清洁可再生能源
在线阅读 下载PDF
基于改进RCMDE与优化随机森林的掘进机截割头故障诊断
6
作者 马天兵 杨婷 +3 位作者 李长鹏 杜菲 史瑞 于平平 《科学技术与工程》 北大核心 2025年第9期3629-3636,共8页
针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截... 针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截割头故障诊断新方法。首先,利用RCMFDE全面表征掘进机截割头故障特征信息,构建故障特征数据集;其次,采用HORF对故障类型进行训练和测试,实现掘进机截割头的故障模式识别;最后,将所提方法运用在掘进机截割头实验数据分析中,并将其与现有的多尺度模糊熵、精细复合多尺度散布熵故障特征提取方法做比较。实验结果显示:RCMFDE在挖掘故障特征信息方面优于其他两种熵方法,而河马随机森林在故障分类方面优于极限学习机和支持向量机等分类器,所提故障识别模型可以更加精确地识别掘进机截割头的故障类型,且识别准确率达到100%。 展开更多
关键词 掘进机 截割振动信号 特征提取 故障诊断 精细复合多尺度模糊散布
在线阅读 下载PDF
基于IRCMMRDE和HHO-PNN的轴承损伤辨识模型
7
作者 桂芳 李健 刘磊 《机电工程》 北大核心 2025年第1期62-71,共10页
采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速... 采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速度计和麦克风两种类型的传感器,同时获得了滚动轴承不同工况下的振动和声音信号,构建了故障信息量更丰富的多通道信号;随后,提出了能够同步分析多通道信号的IRCMMRDE方法,并将其用于提取滚动轴承多通道信号的故障特征;接着,采用哈里斯鹰优化器(HHO)对概率神经网络的平滑因子进行了自适应寻优,构造了网络结构最优的PNN模型;最后,将损伤样本输入至HHO-PNN模型中,进行了故障的分类识别,完成了滚动轴承样本的故障辨识;并基于滚动轴承声振信号数据集,对基于IRCMMRDE-HHO-PNN的故障诊断方法的有效性进行了验证。研究结果表明:基于IRCMMRDE和HHO-PNN的故障诊断方法的准确率达到了99.6%,平均的识别准确率达到了99.8%,优于其他多种特征提取方法;同时,对多通道融合信号进行分析取得的准确率优于单个通道的信号,准确率分别提高了8.8%和4.8%;此外,HHO-PNN分类器模型的诊断性能优于其他分类模型,更具有泛化性和实用性。 展开更多
关键词 滚动轴承 故障诊断 改进精细复合多多尺度反向散布 概率神经网络 多通道信号 哈里斯鹰优化器
在线阅读 下载PDF
基于RCMFME和AO-ELM的齿轮箱损伤识别策略
8
作者 沈羽 赵旭 《机电工程》 CAS 北大核心 2024年第2期226-235,共10页
针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊... 针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊熵的基础上,对矢量的构造方式进行了改进,提出了能够同时考虑时间序列局部特征和全局特征的RCMFME方法;随后,利用RCMFME指标提取了齿轮箱振动信号的熵值,组建了故障特征向量;接着,利用AO算法对极限学习机的参数进行了自适应搜索,生成了参数最优的多类别分类器;最后,将训练样本的故障特征向量输入至AO-ELM分类模型中进行了模型训练,以构造性能最优的分类器,并实现了对齿轮箱测试样本的故障识别目的;利用两种齿轮箱振动数据集进行了实验,在识别准确率和识别稳定性方面,与相关的特征提取方法进行了对比。研究结果表明:采用基于RCMFME和AO-ELM的故障诊断方法能够分别取得100%和98%的分类准确率,平均识别准确率分别达到了100%和98%,优于精细复合多尺度全局模糊熵(RCMGFE)、精细复合多尺度模糊熵(RCMFE)、精细复合多尺度样本熵(RCMSE)。该方法具有显著的应用潜力。 展开更多
关键词 齿轮箱故障诊断 精细复合多尺度模糊测度 天鹰优化器 极限学习机 AO-ELM分类模型 特征提取
在线阅读 下载PDF
基于VMD-RCMFE的船用柴油机故障特征提取方法
9
作者 王家兴 向阳 陈天佑 《噪声与振动控制》 CSCD 北大核心 2024年第6期172-178,254,共8页
柴油机作为船舶的核心动力来源,一旦发生故障将严重影响船舶安全,为保证船舶及船员安全,需要对船舶柴油机进行故障诊断研究。本文以WP6型船用6缸柴油机为研究对象,对失火、进气滤器堵塞、进气门间隙过大及排气门间隙过大多种故障进行研... 柴油机作为船舶的核心动力来源,一旦发生故障将严重影响船舶安全,为保证船舶及船员安全,需要对船舶柴油机进行故障诊断研究。本文以WP6型船用6缸柴油机为研究对象,对失火、进气滤器堵塞、进气门间隙过大及排气门间隙过大多种故障进行研究。针对船舶柴油机缸盖振动信号的非线性和非平稳特性,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)、精细化复合多尺度模糊熵(Refined Composite Multiscale Fuzzy Entropy,RCMFE)、支持向量机(Support Vector Machines,SVM)的柴油机故障诊断方法。该方法首先利用VMD方法对缸盖振动信号进行降噪处理,然后利用RCMFE方法提取柴油机缸盖振动信号中隐含的故障特征,最后采用SVM模型进行诊断,诊断精度高达99.2%。 展开更多
关键词 故障诊断 船舶柴油机 缸盖振动 变分模态分解 精细复合多尺度模糊
在线阅读 下载PDF
基于变分模态分解的癫痫脑电信号分类方法 被引量:15
10
作者 张学军 景鹏 +1 位作者 何涛 孙知信 《电子学报》 EI CAS CSCD 北大核心 2020年第12期2469-2475,共7页
癫痫是一种常见的脑部疾病,通过脑电图能非侵入地定位人脑中的致痫区域.为了辨别病灶性和非病灶性癫痫脑电信号,文章提出一种基于变分模态分解的癫痫脑电信号自动检测方法,首先将原信号分割成多个子信号,并对各子信号进行变分模态分解,... 癫痫是一种常见的脑部疾病,通过脑电图能非侵入地定位人脑中的致痫区域.为了辨别病灶性和非病灶性癫痫脑电信号,文章提出一种基于变分模态分解的癫痫脑电信号自动检测方法,首先将原信号分割成多个子信号,并对各子信号进行变分模态分解,然后从分解后的不同变分模态函数中提取精细复合多尺度散布熵和精细复合多尺度模糊熵两个特征并利用支持向量机进行分类.针对癫痫脑电的公共数据集,最终的实验结果表明,准确率、灵敏度和特异度三个性能指标分别达到94.24%,95.58%和90.64%,ROC曲线下面积达0.978. 展开更多
关键词 癫痫脑电 变分模态分解 精细复合多尺度散布 精细复合多尺度模糊 支持向量机
在线阅读 下载PDF
基于CIELMD与RCMFE的往复压缩机轴承间隙故障特征提取方法 被引量:2
11
作者 陈桂娟 江群 +2 位作者 李玉倩 赵海洋 王金东 《机床与液压》 北大核心 2021年第15期180-187,共8页
针对往复压缩机轴承间隙故障诊断振动信号强非平稳、非线性与特征耦合特性,提出基于复合插值包络局部均值分解(CIELMD)与精细复合多尺度模糊熵(RCMFE)特征提取方法。使用CIELMD方法分解不同轴承间隙故障信号,利用相关系数筛选包含主要... 针对往复压缩机轴承间隙故障诊断振动信号强非平稳、非线性与特征耦合特性,提出基于复合插值包络局部均值分解(CIELMD)与精细复合多尺度模糊熵(RCMFE)特征提取方法。使用CIELMD方法分解不同轴承间隙故障信号,利用相关系数筛选包含主要故障信息的PF分量;通过RCMFE方法定量描述PF分量构成状态特征矩阵,为解决信息冗余问题,进一步使用文化基因算法优选矩阵中平均样本距离最大的元素,构成可分性良好的特征向量。往复压缩机轴承间隙故障模拟信号试验结果表明:该方法提取故障特征可分性强,故障识别准确率高。 展开更多
关键词 复合插值包络局部均值分解 精细复合多尺度模糊 特征提取 故障诊断 轴承间隙
在线阅读 下载PDF
基于声振信号融合的IRCMMDE离心泵损伤检测方法 被引量:6
12
作者 陆春元 焦洪宇 《机电工程》 CAS 北大核心 2023年第6期952-959,共8页
离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音... 离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音和振动信号,并将声音和振动信号进行了融合,以充分利用不同类型信号中所蕴含的损伤特征信息;随后,针对多元多尺度散布熵(MMDE)不稳定的缺陷,对MMDE的粗粒化处理进行了优化,提出了改进精细复合多元多尺度散布熵(IRCMMDE)的复杂性测量指标;接着,利用IRCMMDE对声振融合信号进行了损伤特征提取,构建了各个损伤状态下的特征矩阵;最后,利用灰狼算法优化的支持向量机分类器,对各个损伤状态下的特征矩阵进行了识别,得到了最终的离心泵损伤检测结论。研究结果表明:采用基于声振信号融合的离心泵损伤检测方法,其最高可达到99.2%的故障识别准确率,相比于基于MMDE和RCMMDE的损伤检测方法,其能够更准确地识别出离心泵的损伤;该方法还能有效缓解单一信号检测时的不确定性,并且在多次实验验证下,其仍具有很高的检测精度。 展开更多
关键词 声振信号融合 离心泵损伤检测 改进精细复合多多尺度散布 灰狼算法 支持向量机
在线阅读 下载PDF
基于IUPEMD和RCMFE的往复压缩机气阀故障诊断 被引量:1
13
作者 宋美萍 王金东 +1 位作者 赵海洋 于德龙 《机床与液压》 北大核心 2023年第7期208-213,共6页
由于往复压缩机的振动信号非线性、非平稳性的特点,为进一步提高故障识别率,提出一种基于改进的均匀相位经验模态分解(IUPEMD)和精细复合多尺度模糊熵(RCMFE)的往复压缩机气阀故障诊断方法。采用IUPEMD方法对信号进行分解,通过不同的参... 由于往复压缩机的振动信号非线性、非平稳性的特点,为进一步提高故障识别率,提出一种基于改进的均匀相位经验模态分解(IUPEMD)和精细复合多尺度模糊熵(RCMFE)的往复压缩机气阀故障诊断方法。采用IUPEMD方法对信号进行分解,通过不同的参数组合,利用正交性为指标选择最佳IMF分量,有效提高了IUPEMD对非平稳性信号的分解精度,减少模态混叠现象;以峭度为评价指标对分解后的IMF分量进行筛选,并重构信号,求解重构信号的RCMFE,提取故障特征向量;最后,将特征向量输入到支持向量机进行分类识别。试验结果验证了该方法的有效性和优越性。 展开更多
关键词 改进的均匀相位经验模态分解 精细复合多尺度模糊 气阀 故障诊断
在线阅读 下载PDF
基于FCMMWPE-BSASVM组合算法的调心球轴承故障诊断研究 被引量:1
14
作者 张昭晗 齐俊平 +1 位作者 李峰 崔金巍 《制造技术与机床》 北大核心 2022年第11期15-19,共5页
为了提高机械旋转系统上调心球轴承特征提取和故障识别能力,设计了一种精细复合多元多尺度加权排列熵(fine composite multivariate multi-scale weighted permutation entropy,FCMMWPE)与天牛须搜索支持向量机算法(beetle antennae sea... 为了提高机械旋转系统上调心球轴承特征提取和故障识别能力,设计了一种精细复合多元多尺度加权排列熵(fine composite multivariate multi-scale weighted permutation entropy,FCMMWPE)与天牛须搜索支持向量机算法(beetle antennae search algorithm-supportvectormachine,BSASVM)相结合的故障特征提取方法,并采用等度规映射(Isomap)进行故障识别,最后开展故障诊断实例分析。研究结果表明:采用FCMMWPE算法处理状态熵值达到最高,形成更平滑的熵值曲线,广义粗粒化方法具备明显优势。轴承产生局部故障时,形成具有规律特征的振动信号,表明采用FCMMWPE提取调心球轴承故障特征满足可靠性条件并具备明显优势。对文章构建的FCMMWPE与Isomap特征集进行运行故障识别时实现了99.9%的准确率,实现调心球轴承故障高效识别。BSASVM满足更优的故障识别性能,具备更优的模式识别性能和更高处理效率。该研究可以拓宽到其他的机械传动领域,具有很好的应用价值。 展开更多
关键词 精细复合多多尺度加权排列 支持向量机 等度规映射 调心球轴承 故障诊断
在线阅读 下载PDF
基于RCMDE和KFCM的煤矿电网故障选线方法 被引量:6
15
作者 韩国国 史小军 +2 位作者 王晖 程卫健 穆艳祥 《工矿自动化》 北大核心 2022年第8期92-99,共8页
针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵(RCMDE)和核模糊C均值聚类(KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅... 针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵(RCMDE)和核模糊C均值聚类(KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅值和极性差异的选线方法适用性有限;若线路中的零序电流互感器极性接反,基于极性的方法直接失效;采样不同步时,基于波形相似度的选线方法难以得到正确结果。为克服上述局限性,引入RCMDE来度量各线路暂态零序电流信号的复杂程度和不规则度,以RCMDE作为选线特征量。采用KFCM算法对RCMDE进行聚类分析,以实现故障线路自动识别,并通过判断轮廓系数是否超过阈值来区分母线故障和馈线故障。最后,通过聚类得到的隶属度矩阵判断馈线故障点所在线路。仿真结果表明:①故障点所在的故障线路对应的RCMDE曲线与非故障线路间具有较大差异,可分为2类。RCMDE可作为筛选故障线路的特征指标。②发生母线故障时聚类结果中存在平均轮廓系数小于阈值的分簇,而发生馈线故障时聚类结果各分簇的轮廓系数均大于阈值,在各类故障场景下,基于RCMDE和KFCM的煤矿电网故障选线方法均能实现正确选线,说明其准确性不受故障线路、故障位置、故障合闸角及接地电阻等因素的影响。③在噪声干扰情况下,基于RCMDE和KFCM的煤矿电网故障选线方法在小电阻接地或高阻接地情况下均能实现正确选线,具有较强的抗干扰能力。④在采样不同步及故障线路零序电流互感器极性反接等情况下,基于RCMDE和KFCM的煤矿电网故障选线方法仍可实现正确选线,选线结果具有较高的鲁棒性。 展开更多
关键词 谐振接地系统 煤矿电网 单相接地故障 故障选线 精细复合多尺度散布 模糊C均值聚类 暂态零序电流
在线阅读 下载PDF
基于自适应RCGmvMFE和流行学习的滚动轴承故障诊断 被引量:4
16
作者 刘武强 杨小强 申金星 《机械强度》 CAS CSCD 北大核心 2022年第1期9-18,共10页
多尺度模糊熵能够较好的量化振动信号的复杂程度,但缺乏对其他信道信息的有效利用,为了充分利用其他信道的振动信息,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中。为了准确提取轴承信号中的故障特征,提出了基... 多尺度模糊熵能够较好的量化振动信号的复杂程度,但缺乏对其他信道信息的有效利用,为了充分利用其他信道的振动信息,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中。为了准确提取轴承信号中的故障特征,提出了基于自适应噪声完备集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)和精细复合广义多变量多尺度模糊熵(Refined Composite Generalized Multivariate Multiscale Fuzzy Entropy,RCGmvMFE)的轴承多故障诊断方法。首先利用CEEMDAN对多信道的源信号进行分解获得无模式混叠的IMF。然后采用相关性分析方法对IMF分量进行筛选,选出对故障特征敏感的IMF作为多通道数据构成多元变量,并计算其RCGmvMFE组成故障特征。随后采用t分布随机邻域嵌入(t-distributed Stochastic Neighbor Embedding,t-SNE)对高维特征进行维数约简。最后利用鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化核极限学习机(Kernel Extreme Learning Machine,KELM)对低维故障特征进行分类。实验结果表明,该方法能够有效地诊断轴承不同程度的故障,为滚动轴承的故障诊断提供了补充方法。 展开更多
关键词 CEEMDAN 精细复合广义多变量多尺度模糊 敏感IMF t分布随机邻域嵌入 流行学习 滚动轴承 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部