期刊文献+
共找到976篇文章
< 1 2 49 >
每页显示 20 50 100
基于改进集合经验模态分解和强化视觉Transformer模型的风电机组故障预警
1
作者 许伯强 王彪 +1 位作者 孙丽玲 尹彦博 《电工技术学报》 北大核心 2025年第20期6537-6551,共15页
现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器... 现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器(ViT)模型的风电机组故障预警方法。首先,对EEMD算法进行改进,分解得到的数据包含不同时间尺度的特征信息,且使得分解过程中不发生信息泄露。采用改进的EEMD算法解构风电机组SCADA多维数据之后,构建反映风电机组实时状态的特征矩阵。然后,结合非对称卷积模块对ViT模型进行强化,并加入可变形注意力模块,在降低计算复杂度的同时使得模型可以充分捕捉不同维度与时间尺度的风电机组特征。最后,将特征矩阵输入强化的ViT模型以获得预测结果,与实际值对比得到残差矩阵,依此进行风电机组故障的预警。经风电机组实际运行SCADA数据验证,该文提出的风电机组故障预警方法准确有效,并可通过残差矩阵进一步辨识风电机组发生的故障类型。 展开更多
关键词 风电机组 数据采集与监视控制系统(SCADA)数据 故障预警 改进集合经验模态分解(EEMD) 强化ViT模型
在线阅读 下载PDF
基于集合经验模态分解和Q学习策略的短期负荷预测模型
2
作者 段秦尉 何祥针 +2 位作者 潮铸 谢祥中 兰萱丽 《现代电力》 北大核心 2025年第2期360-368,共9页
短期负荷预测对电力系统的安全稳定运行有着重要意义,为此,提出一种基于集合经验模态分解和Q学习策略优化的短期负荷预测模型。首先,采用集合经验模态分解对原始负荷序列进行分解,以降低预测难度。其次,在此基础上分别采用卷积神经网络... 短期负荷预测对电力系统的安全稳定运行有着重要意义,为此,提出一种基于集合经验模态分解和Q学习策略优化的短期负荷预测模型。首先,采用集合经验模态分解对原始负荷序列进行分解,以降低预测难度。其次,在此基础上分别采用卷积神经网络、残差神经网络、长短时记忆神经网络和门控循环单元网络4个深度学习模型进行预测得到4个预测结果,再对其加权组合获得最终的负荷预测值。第三,利用Q学习策略对组合权重进行优化,进而最大化组合模型的预测性能。最后,通过某地区真实采集的负荷数据进行实验,结果表明文中所提出的组合预测模型优于其他预测模型,并验证了所提模型的有效性。 展开更多
关键词 短期负荷预测 集合经验模态分解 深度学习模型 Q学习策略
在线阅读 下载PDF
基于经验模态分解的ARIMA模型在山西省肺结核预测中的应用 被引量:3
3
作者 刘静 赵瑞青 +7 位作者 赵执扬 翟梦梦 王旭春 李一汀 范月玲 高建伟 陈利民 仇丽霞 《中国卫生统计》 北大核心 2025年第2期175-179,共5页
目的探讨基于经验模态分解(empirical mode decomposition,EMD)的自回归移动平均(autoregressive integrated moving average,ARIMA)模型对于肺结核流行趋势的预测性能,为肺结核的预测提供方法支撑,也为其他传染病的预测提供思路。方法... 目的探讨基于经验模态分解(empirical mode decomposition,EMD)的自回归移动平均(autoregressive integrated moving average,ARIMA)模型对于肺结核流行趋势的预测性能,为肺结核的预测提供方法支撑,也为其他传染病的预测提供思路。方法收集并整理2008年1月—2018年12月山西省肺结核报告发病率月度数据,分别将该数据的最后三个月、六个月、九个月以及一年作为测试集用于模型预测效果的评价,训练集则为对应序列的剩余数据。构建EMD-ARIMA模型进行预测,并与单一ARIMA模型的预测效果进行比较。结果EMD-ARIMA模型对未来三个月、六个月、九个月以及一年流行趋势的预测误差均小于ARIMA模型的各项误差值。结论与单一的ARIMA模型相比,EMD-ARIMA模型提高了预测精度,能较好地预测肺结核的流行趋势,为疾病防控提供有效的理论参考。 展开更多
关键词 肺结核 经验模态分解 ARIMA模型 预测
在线阅读 下载PDF
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法 被引量:1
4
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
在线阅读 下载PDF
基于互补集合经验模态分解加权能量熵的多端柔性直流电网纵联保护方法
5
作者 国联宁 李昊旻 +2 位作者 张强 潘世佳 耿英三 《高电压技术》 北大核心 2025年第10期5014-5027,I0004,共15页
直流故障的快速可靠识别是保障多端柔性直流电网安全稳定运行的关键。针对现有保护方法在高过渡电阻、雷击干扰以及长距离线路条件下速动性和可靠性不足等问题,提出了一种基于互补集合经验模态分解加权能量熵的纵联保护方法,通过提取故... 直流故障的快速可靠识别是保障多端柔性直流电网安全稳定运行的关键。针对现有保护方法在高过渡电阻、雷击干扰以及长距离线路条件下速动性和可靠性不足等问题,提出了一种基于互补集合经验模态分解加权能量熵的纵联保护方法,通过提取故障暂态电流高频特征构建加权能量熵作为启动判据,融合方向电流能量构建比值型差动区域判据,实现故障快速识别与区段判定。针对双极柔性直流电网故障特性与架空线路易受雷击影响的特点,引入选极判据与雷击干扰识别判据。首先对多端柔性直流电网线路区内、区外故障的故障电流行波进行了时频分析;随后,在此基础上研究了故障前后电流频域能量的变化特征,构建了基于互补集合经验模态分解加权能量熵的纵联保护方法;最后,在PSCAD/EMTDC中搭建四端柔性直流电网模型进行了验证。研究结果表明,该方法可在故障后1.5 ms内迅速识别故障。在300?过渡电阻和20?dB噪声滤波条件下,启动判据变化与区内外判据幅值差异分别超过65.8%和73.33%,可有效区分50 kA雷击干扰。在500μs数据不同步条件下能实现高可靠保护,为长距离多端柔性直流输电的快速高可靠保护提供了理论基础。 展开更多
关键词 多端柔性直流电网 故障识别 互补集合经验模态分解 能量熵 纵联保护 区域特征量
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测 被引量:1
6
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归机
在线阅读 下载PDF
集合经验模态分解-排列熵的锂电池储能方法
7
作者 刘伟峰 刘艳伟 +1 位作者 李峰 柳天杰 《机械设计与制造》 北大核心 2025年第8期27-30,35,共5页
电动汽车行驶阶段受高频需求功率分量作用导致的锂电池寿命下降,为此构建了一种通过集合经验模态分解(EEMD)与排列熵(PE)进行能量管理的方案。利用EEMD把功率信号分解成IMF分量,经过重构处理获得的锂电池功率与超级电容功率。研究结果表... 电动汽车行驶阶段受高频需求功率分量作用导致的锂电池寿命下降,为此构建了一种通过集合经验模态分解(EEMD)与排列熵(PE)进行能量管理的方案。利用EEMD把功率信号分解成IMF分量,经过重构处理获得的锂电池功率与超级电容功率。研究结果表明:电池储能方法减小锂电池的峰值电流,达到稳定电池功率输出以及降低功率波动程度的效果。相对传统电池控制模式,采用EEMD-PE设置的混合储能能量方案可以使低、中、高速状态下的电流均方根值依次降低12.41、18.59、19.42%,同时电流峰值降低55.84、52.31与42.06%。相对电池的储能系统控制性能,这里的方法可以使锂电池降低19.40%的均方根电流,同时电流峰值也降低达到55.91%。该研究有效发挥超级电容大倍率充放电的优势,为系统的高频功率运行提供支持。 展开更多
关键词 电动汽车 混合储能 集合经验模态分解 排列熵
在线阅读 下载PDF
基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测 被引量:7
8
作者 刘斌 吉春霖 +2 位作者 曹丽君 武欣雅 段云凤 《电力系统保护与控制》 EI CSCD 北大核心 2024年第15期167-177,共11页
锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的... 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的锂离子电池剩余使用寿命预测方法。首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解。其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测。最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测。采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命预测 Transformer网络 双向长短期记忆网络 完全集合经验模态分解
在线阅读 下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型 被引量:3
9
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 模型 Stacking融合
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
10
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
电阻抗断层成像技术的心肺信号降维集合经验模态分解方法研究
11
作者 李坤 李蔚琛 +4 位作者 郭奕彤 王伟策 王煜 闫孝姮 史学涛 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第5期539-549,共11页
心脏射血与肺通气活动信息的实时获取具有重要临床意义。本研究提出了一种基于胸部电阻抗断层成像(EIT)的心肺信号降维集合经验模态分解方法,以同时分离胸部EIT数据中的心脏射血和肺通气活动信号。招募9名志愿者进行了EIT胸部数据采集... 心脏射血与肺通气活动信息的实时获取具有重要临床意义。本研究提出了一种基于胸部电阻抗断层成像(EIT)的心肺信号降维集合经验模态分解方法,以同时分离胸部EIT数据中的心脏射血和肺通气活动信号。招募9名志愿者进行了EIT胸部数据采集。首先,根据屏息状态下胸部EIT数据中心脏活动信号的强弱对测量通道分类;随后,使用集合经验模态分解方法对自主呼吸状态下的EIT数据进行分解,并根据频谱特性对分解出的各分量归类,以得到肺通气EIT信号;然后,结合带通滤波方法,同时依据前述通道分类对心脏活动信号降维,得到心脏活动EIT信号;最后,重构得到通气相和心搏相EIT图像序列。结果表明,该方法可在通气相图像的肺区能够获得最高的肺通气功率谱峰(52.71±1.39)dB,在心搏相图像的心脏区域能够获得最高的心脏活动功率谱峰(43.05±3.26)dB,表明保留的通气信息和心脏活动信息非常丰富,同时在通气相图像心脏区域获得了最低心脏活动相关功率谱峰(10.02±2.65)dB,表明心脏活动的抑制效果更佳,相较于参考方法均有显著性差异(P<0.05)。研究表明,该方法可以有效分离肺通气与心脏活动相关信号,分别保留各自活动信息并抑制心脏对肺区成像的影响,同时实现对干扰信号的有效抑制,为临床上提供更加准确的治疗策略指导奠定基础。 展开更多
关键词 电阻抗断层成像 集合经验模态分解 心脏活动相关信号 肺通气
在线阅读 下载PDF
基于时变滤波经验模态分解-重构和独立自注意力机制的iTransformer超短期负荷预测方法 被引量:1
12
作者 范士雄 李东琦 +3 位作者 郭剑波 王铁柱 马士聪 赵泽宁 《电网技术》 北大核心 2025年第6期2436-2445,I0077,I0078,共12页
准确的负荷预测对电力系统安全稳定运行至关重要。为了进一步提高负荷预测的精准度,将数据处理和模型改进的方法相融合,提出了一种基于时变滤波经验模态分解(time-varying filter empirical mode decomposition,TVF-EMD)-重构和独立自... 准确的负荷预测对电力系统安全稳定运行至关重要。为了进一步提高负荷预测的精准度,将数据处理和模型改进的方法相融合,提出了一种基于时变滤波经验模态分解(time-varying filter empirical mode decomposition,TVF-EMD)-重构和独立自注意力(stand-alone self-attention,SASA)机制的iTransformer超短期负荷预测方法。首先,针对超短期负荷数据的非平稳和非线性特性,采用TVF-EMD对负荷数据进行分解,得到若干本征模态函数(intrinsic mode function,IMF),通过样本熵(sample entropy,SE)按熵值的大小将IMF分量进行重组;其次,对iTransformer神经网络进行改进,引入一种独立自注意力机制替换iTransformer编码器中的自注意力机制,有效提升了模型捕捉不同变量的依赖关系的能力;最后,将重组后的分量输入到基于独立自注意力机制的iTransformer中进行预测,将得到的结果进行叠加得到最终的预测值。以我国某地区220k V变电站高压侧的实际有功负荷数据集为例进行验证并与现有主流模型进行对比,结果表明该文采用的预测方法具有更好的预测性能。 展开更多
关键词 超短期负荷预测 时变滤波经验模态分解 样本熵 iTransformer模型 注意力机制
在线阅读 下载PDF
一种基于改进经验模态分解与A-LSTM混合神经网络的股价预测方法
13
作者 苏兆辉 尚领 +1 位作者 刘志中 皇浩 《南京大学学报(自然科学版)》 北大核心 2025年第4期613-623,共11页
由于股价序列存在非线性、多噪声的特点,股票价格预测一直是一项具有挑战性的任务,许多研究采用分解算法来提高预测精度,但仅仅关注了克服股价非线性的问题,没有考虑其他价格因素.为了解决上述问题,提出一种基于改进经验模态分解与A-LST... 由于股价序列存在非线性、多噪声的特点,股票价格预测一直是一项具有挑战性的任务,许多研究采用分解算法来提高预测精度,但仅仅关注了克服股价非线性的问题,没有考虑其他价格因素.为了解决上述问题,提出一种基于改进经验模态分解与A-LSTM(Long Short-Term Memory)混合神经网络的股价预测方法,在引入多个数据指标的基础上,结合互补集合经验模态分解算法与注意力增强的LSTM来预测股价.首先,利用互补集合经验模态分解方法来分解股票原始收盘价,得到多个本征模态函数(Intrinsic Mode Functions,IMFs)和一个趋势项,可以在降低股价非线性的同时,提取IMF的多尺度特征;其次,将得到的IMF、趋势项及最高价、最低价和收盘价一同输入注意力增强的LSTM,学习多个股票影响因子并挖掘其特征信息;最后,利用注意力增强的LSTM来学习特征中的长期依赖关系和动态调整输入特征的权重,突出关键信息,输出预测结果 .在两个股市的四只股票数据集上的实验结果显示,该方法的效果优于基准模型,具有良好的准确性与稳定性,可以为金融市场分析和投资决策提供一定的支持. 展开更多
关键词 互补集合经验模态分解 多特征提取 LSTM 注意力机制 股价预测
在线阅读 下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法 被引量:4
14
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
在线阅读 下载PDF
基于集合经验模态分解的河北唐山井同震响应特征 被引量:1
15
作者 许英霞 丁俊柯 +4 位作者 马传璧 郭建芳 尹宝军 曹冲 左文喆 《地球科学与环境学报》 CAS 北大核心 2024年第2期252-268,共17页
集合经验模态分解(EEMD)能够客观真实地从非线性、非平稳信号中提取有用信息,地震观测井的井水位表征的波形信号也是典型的非线性、非平稳信号,因此,集合经验模态分解在获取井水位同震响应信息方面具有重要的应用潜力。通过观测河北唐山... 集合经验模态分解(EEMD)能够客观真实地从非线性、非平稳信号中提取有用信息,地震观测井的井水位表征的波形信号也是典型的非线性、非平稳信号,因此,集合经验模态分解在获取井水位同震响应信息方面具有重要的应用潜力。通过观测河北唐山井2016~2023年多次井水位同震响应,研究集合经验模态分解对井水位分析处理的优缺点,识别唐山井对远震、近震的井水位同震响应特征,应用地震能量密度经验公式推测唐山井记震能力。结果表明:唐山井水位观测数据秒值在经过集合经验模态分解后,对合适的高频分量进行重构可以压制噪声干扰,有利于观察井水位同震响应特征;对于远场大震引起的振荡型同震响应可以客观真实地进行识别和提取;对于近场地震引起的脉冲型和阶变型同震响应,需结合原始数据进行研究;井水位观测数据秒值有利于揭示区域应力场的变化,因观测数据秒值记震精度提高,唐山井能够记录到地震能量密度为1.77×10^(-7) J·m^(-3)的地震,观测井对不同方位地震的敏感度可用于研究其所在断裂带的裂隙走向。对于超过一定距离的远场地震,井-含水层系统能够记录到的井水位同震响应频率可在一定的范围内估算观测井的固有振动频率,唐山井固有振动频率和地震瑞丽面波频率接近。 展开更多
关键词 同震响应 唐山井 集合经验模态分解 观测数据秒值 固有频率 地震方位 裂隙走向 地震能量密度
在线阅读 下载PDF
基于集合经验模态分解和支持向量机的短期风速预测模型 被引量:9
16
作者 祝晓燕 张金会 +1 位作者 付士鹏 朱霄珣 《华北电力大学学报(自然科学版)》 CAS 北大核心 2013年第5期60-64,共5页
针对风电场对短期风速的准确预测的要求,建立了一种基于集合模态分解(Ensemble Empirical Mode Decomposition,EEMD)和粒子群算法(Particle Swarm Optimization,PSO)优化支持向量机(Support Vector Machine,SVM)的预测模型。该模型首先... 针对风电场对短期风速的准确预测的要求,建立了一种基于集合模态分解(Ensemble Empirical Mode Decomposition,EEMD)和粒子群算法(Particle Swarm Optimization,PSO)优化支持向量机(Support Vector Machine,SVM)的预测模型。该模型首先对非平稳的风速时间序列进行EEMD分解,分解为一系列的相对平稳的分量;然后SVM对各个分量进行预测,针对各个分量的特点利用PSO对SVM进行参数的优化,对各个分量的SVM预测模型选取最佳的参数组合;最后将分量的预测结果叠加输出最后的风速预测结果。结果表明该预测模型比SVM直接预测模型精度高,达到了预测要求。 展开更多
关键词 集合经验模态分解 支持向量机 粒子群算法 预测模型
在线阅读 下载PDF
基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究 被引量:13
17
作者 杨磊 黄元生 +2 位作者 张向荣 董玉琳 高冲 《电力系统保护与控制》 EI CSCD 北大核心 2020年第10期81-90,共10页
准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算... 准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、套索算法(Least Absolute Shrinkage and Selection Operator, LASSO)、遗传算法(Genetic Algorithm, GA)、广义回归神经网络(General Regression Neural Network, GRNN)和长短期记忆模型(Long Short-Term Memory,LSTM)的短期风速变权组合预测模型(Variable Weighted Hybrid Model, VWHM)。首先运用集合经验模态分解技术,将原始风速时间序列分解成多个不同的子序列。然后运用套索算法对各个子序列的数据变量进行筛选,提取代表性变量作为预测输入。最后利用GA的全局优化能力,对由GRNN和LSTM构成的组合预测模型的权重系数进行移动样本自适应变权求解,并加权得到最终预测结果。仿真结果表明,所提的变权组合模型比单一模型以及传统组合模型具有更高的预测精度,且在风速预测中具有优越性。 展开更多
关键词 短期风速预测 集合经验模态分解 套索算法 广义回归神经网络 长短期记忆 遗传算法
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:4
18
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
集合经验模态分解-主成分分析分解消噪下的支持向量机组合模型预测 被引量:3
19
作者 桑秀丽 肖清泰 +1 位作者 王华 韩继光 《计算机应用》 CSCD 北大核心 2015年第3期766-769,774,共5页
针对工业现场间歇性非平稳时间序列中的特征提取与状态预测问题,提出了一种基于集合经验模态分解(EEMD)、主成分分析(PCA)和支持向量机(SVM)的预测新方法。首先,利用EEMD算法对间歇性非平稳时间序列进行多时间尺度分析,得到一组不同尺... 针对工业现场间歇性非平稳时间序列中的特征提取与状态预测问题,提出了一种基于集合经验模态分解(EEMD)、主成分分析(PCA)和支持向量机(SVM)的预测新方法。首先,利用EEMD算法对间歇性非平稳时间序列进行多时间尺度分析,得到一组不同尺度的本征模函数(IMF)分量;然后,基于"3σ"原则估计噪声能量,自适应确定累计贡献率,利用PCA算法去除IMF中存在的噪声,降低特征维数和冗余度;最后,在确定SVM关键参数的基础上,以主分量作为输入变量预测未来。实例测试效果显示:平均绝对误差(MAE)、均方误差(MSE)、平均绝对误差百分比(MAPE)和均方误差百分比(MSPE)分别为514.774,78.216,12.03%和1.862%。实验结果表明:风能场输出功率时间序列经过EEMD算法和PCA算法的进一步消去噪声处理,在抑制混频现象发生的同时降低了非平稳性,使得最后进行SVM预测的精度较未经PCA处理更高。 展开更多
关键词 间歇性非平稳时间序列 集合经验模态分解 主成分分析 支持向量机 组合模型预测
在线阅读 下载PDF
一种结合互补集合经验模态分解和小波核极限学习机的短期电力负荷预测模型 被引量:6
20
作者 郭瑞 樊亚敏 潘玉民 《计算机应用与软件》 CSCD 2016年第12期243-247,263,共6页
电力系统的管理和调度对精确的负荷预测模型有着极高的要求。为全面提高负荷预测模型的性能,提出一种新型的结合互补集成经验模态分解(CEEMD)和小波核函数极限学习机(WKELM)的短期电力负荷组合预测模型。首先通过CEEMD将历史电力负荷数... 电力系统的管理和调度对精确的负荷预测模型有着极高的要求。为全面提高负荷预测模型的性能,提出一种新型的结合互补集成经验模态分解(CEEMD)和小波核函数极限学习机(WKELM)的短期电力负荷组合预测模型。首先通过CEEMD将历史电力负荷数据自适应地分解为一系列相对平稳的子序列,对各分量建立小波核极限学习机的预测模型,预测各分量的负荷值并对其进行求和得到最终预测结果。用四种预测模型对真实的负荷数据进行训练预测,算例表明新模型在预测精度和效率上都具有一定优势,同时克服了传统EMD中容易出现的模态混叠问题以及ELM中存在的过拟合等缺陷,具有一定的实际应用潜力。 展开更多
关键词 短期负荷预测 互补的集成经验模态分解 小波核极限学习机 组合预测模型
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部