本文使用D/max-2500X射线衍射仪研究了内蒙古锡林郭勒地区上古生界泥质岩石伊利石的成因标志,讨论了有机质镜质体反射率对变质温度的表征。研究区上古生界泥质岩石伊利石的标型特征为:伊利石结晶度分布于0.28~>0.77之间,平均值0.40...本文使用D/max-2500X射线衍射仪研究了内蒙古锡林郭勒地区上古生界泥质岩石伊利石的成因标志,讨论了有机质镜质体反射率对变质温度的表征。研究区上古生界泥质岩石伊利石的标型特征为:伊利石结晶度分布于0.28~>0.77之间,平均值0.40;伊利石(白云母)多型以2M1型为主,2M1+1Md多型和1Md多型相对较少;伊利石(白云母)b0值变化于8.983~9.046之间,平均值9.019,指示其形成于成岩-极低级变质作用。有机质镜质体反射率具有示踪变质温度的作用,应用Barker and Pawlewiez(1986,1994)、Barker and Goldsteinl(1990)和Mullis et al.(2001)建立的镜质体反射率地质温度计,对研究区上古生界泥质岩石变质温度进行了估算,揭示古地温处于136~321℃之间,温度估算值主要分布在180~260℃之间,平均值为245℃,这表明研究区上古生界遭受了成岩-极低级变质作用,变质程度属近变质带。研究区上古生界泥质岩石的Ro值主要分布在1.01%~3.67%之间,表明有机质演化处于成熟-过成熟阶段,泥质岩石具有生烃的能力,部分层位可能具有形成油气资源的潜力。展开更多
Tin phosphide(Sn_(x)P_(y))is an anode for sodium-ion batteries resulting from its exceptionally high theoretical capacity in future.Nevertheless,its application will be hindered by significant volume expansion during ...Tin phosphide(Sn_(x)P_(y))is an anode for sodium-ion batteries resulting from its exceptionally high theoretical capacity in future.Nevertheless,its application will be hindered by significant volume expansion during charge discharge cycles and poor electrical conductivity.This study employs a Sn-based metal-organic framework(Sn-MOF)as a precursor for synthesizing tin phosphide nanoparticles.Then Solidago Canadensis L.,commonly known as Canadian Goldenrod,is utilized as a biomass carbon carrier to form a composite with tin phosphide nanoparticles.The biomass derived porous carbon provides additional sodium ion storage sites and serves as a structural scaffold that constrains the volumetric expansion of tin phosphide,thereby enhancing the material’s stability.The fabricated composite exhibits superior electrode electrochemical performance for sodium-ion batteries.It retains a high capacity(489.5 mA·h/g)after 100 cycles at 0.2 A/g.Even after 500 cycles at a high current density of 2 A/g,it still maintains a stable reversible capacity.This study offers a comprehensive exploration of innovative design strategies essential for the development of novel anode materials,paving the way for more sustainable and efficient sodium-ion-based energy storage systems.展开更多
In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sod...In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sodium-ion batteries was tested.The characterization of X-ray microscopy and scanning electron microscopy demonstrated that the morphological structure of xylan char was altered due to the addition of Na_(2)CO_(3) catalyst.The increasement of the Na_(2)CO_(3)/xylan ratio resulted in a slenderization of the triangular prism shape of the char skeleton and a reduction in porosity.X-ray diffraction analysis revealed that Na_(2)CO_(3) promoted the growth of the(004)crystal plane of graphite during xylan pyrolysis,while inhibiting the formation of the(100/101)crystal planes.Raman spectroscopy analysis indicated that the presence of Na_(2)CO_(3)had changed the graphitization degree of xylan char.Electrochemical tests further showed that char prepared with a Na_(2)CO_(3)/xylan mass ratio of 1∶1 exhibited the highest sodium storage capacity.This study provides a pathway for the rational design carbon materials derived from xylan for future applications in energy storage devices.展开更多
Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The ...Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made.展开更多
Objective:Urinary calculi are characterized by a high recurrence rate,and patients’adherence to self-management after discharge directly affects health outcomes.Traditional offline follow-up models often face problem...Objective:Urinary calculi are characterized by a high recurrence rate,and patients’adherence to self-management after discharge directly affects health outcomes.Traditional offline follow-up models often face problems such as poor compliance and uneven allocation of medical resources,making it difficult to meet individualized health management needs.Remote follow-up provides a novel solution to optimize long-term management,improve health literacy,and enhance clinical outcomes.This study aims to evaluate the effect of remote follow-up under an intelligent medical collaborative model on quality of life and health-promoting lifestyle in patients with urinary calculi,and to assess its short-term impact on clinical outcomes.Methods:A total of 118 patients with urinary calculi admitted to a tertiary hospital in Hunan Province between August and November 2024 were recruited and randomly assigned to a control group(n=59)or an intervention group(n=59).The control group received routine departmental follow-up,while the intervention group underwent remote follow-up based on an intelligent medical collaborative model for one month.Assessments were conducted before discharge(T0),15 days after discharge(T1),and one month after discharge(T2),using the Wisconsin Stone Quality of Life Questionnaire and the Health-Promoting Lifestyle Profile.At T2,the incidence of forgotten ureteral stents(FUS),ureteral stent-related complications,unplanned readmissions,and patient satisfaction were evaluated.Results:No significant differences were observed between groups at T0 in baseline characteristics or outcome measures(all P>0.05).At T1 and T2,the intervention group had significantly higher health-related quality of life scores than the control group(P<0.05).Generalized estimating equation(GEE)analysis showed significant between-group effects(Wald's χ^(2)=22.961,P<0.001),time effects(Wald's χ^(2)=23.065,P<0.001),and interaction effects(Wald's χ^(2)=6.930,P<0.05).Similarly,at T1 and T2,the intervention group scored significantly higher on health-promoting lifestyle than the control group(P<0.05),with significant between-group effects(Wald's χ^(2)=22.936,P<0.001),time effects(Wald's χ^(2)=10.694,P<0.001),and interaction effects(Wald's χ^(2)=18.921,P<0.05).No significant differences were found between groups in the incidence of FUS,ureteral stent-related complications,or unplanned readmissions(all P>0.05).Patient satisfaction was significantly higher in the intervention group(t=4.089,P<0.001).Conclusion:Remote follow-up under an intelligent medical collaborative model helps improve quality of life,promote health-oriented lifestyles,and enhance patient satisfaction among individuals with urinary calculi.展开更多
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur...The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.展开更多
The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face...The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face area and high porosity have been investigated. Compared to other car-bon materials, biomass-derived carbon (BC) are considered efficient and eco-friendly materials for this purpose. We summarize the recent advances in BC materials for both EMI shielding and EM wave absorption. After a brief overview of the synthesis strategies of BC materials and a precise out-line of EM wave interference, strategies for improving their EMI shielding and EM wave absorption are discussed. Finally, the existing challenges and the future prospects for such materials are briefly summarized.展开更多
Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and exp...Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost.展开更多
文摘本文使用D/max-2500X射线衍射仪研究了内蒙古锡林郭勒地区上古生界泥质岩石伊利石的成因标志,讨论了有机质镜质体反射率对变质温度的表征。研究区上古生界泥质岩石伊利石的标型特征为:伊利石结晶度分布于0.28~>0.77之间,平均值0.40;伊利石(白云母)多型以2M1型为主,2M1+1Md多型和1Md多型相对较少;伊利石(白云母)b0值变化于8.983~9.046之间,平均值9.019,指示其形成于成岩-极低级变质作用。有机质镜质体反射率具有示踪变质温度的作用,应用Barker and Pawlewiez(1986,1994)、Barker and Goldsteinl(1990)和Mullis et al.(2001)建立的镜质体反射率地质温度计,对研究区上古生界泥质岩石变质温度进行了估算,揭示古地温处于136~321℃之间,温度估算值主要分布在180~260℃之间,平均值为245℃,这表明研究区上古生界遭受了成岩-极低级变质作用,变质程度属近变质带。研究区上古生界泥质岩石的Ro值主要分布在1.01%~3.67%之间,表明有机质演化处于成熟-过成熟阶段,泥质岩石具有生烃的能力,部分层位可能具有形成油气资源的潜力。
文摘Tin phosphide(Sn_(x)P_(y))is an anode for sodium-ion batteries resulting from its exceptionally high theoretical capacity in future.Nevertheless,its application will be hindered by significant volume expansion during charge discharge cycles and poor electrical conductivity.This study employs a Sn-based metal-organic framework(Sn-MOF)as a precursor for synthesizing tin phosphide nanoparticles.Then Solidago Canadensis L.,commonly known as Canadian Goldenrod,is utilized as a biomass carbon carrier to form a composite with tin phosphide nanoparticles.The biomass derived porous carbon provides additional sodium ion storage sites and serves as a structural scaffold that constrains the volumetric expansion of tin phosphide,thereby enhancing the material’s stability.The fabricated composite exhibits superior electrode electrochemical performance for sodium-ion batteries.It retains a high capacity(489.5 mA·h/g)after 100 cycles at 0.2 A/g.Even after 500 cycles at a high current density of 2 A/g,it still maintains a stable reversible capacity.This study offers a comprehensive exploration of innovative design strategies essential for the development of novel anode materials,paving the way for more sustainable and efficient sodium-ion-based energy storage systems.
基金supported by the Foundation Project of Jihua Laboratory(X200191TL200).
文摘In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sodium-ion batteries was tested.The characterization of X-ray microscopy and scanning electron microscopy demonstrated that the morphological structure of xylan char was altered due to the addition of Na_(2)CO_(3) catalyst.The increasement of the Na_(2)CO_(3)/xylan ratio resulted in a slenderization of the triangular prism shape of the char skeleton and a reduction in porosity.X-ray diffraction analysis revealed that Na_(2)CO_(3) promoted the growth of the(004)crystal plane of graphite during xylan pyrolysis,while inhibiting the formation of the(100/101)crystal planes.Raman spectroscopy analysis indicated that the presence of Na_(2)CO_(3)had changed the graphitization degree of xylan char.Electrochemical tests further showed that char prepared with a Na_(2)CO_(3)/xylan mass ratio of 1∶1 exhibited the highest sodium storage capacity.This study provides a pathway for the rational design carbon materials derived from xylan for future applications in energy storage devices.
文摘Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made.
基金supported by the Innovation Platform’s Open Foundation of Education Department of Hunan Province(18K004)the Natural Science Foundation of Hunan Province(2025JJ50508),China.
文摘Objective:Urinary calculi are characterized by a high recurrence rate,and patients’adherence to self-management after discharge directly affects health outcomes.Traditional offline follow-up models often face problems such as poor compliance and uneven allocation of medical resources,making it difficult to meet individualized health management needs.Remote follow-up provides a novel solution to optimize long-term management,improve health literacy,and enhance clinical outcomes.This study aims to evaluate the effect of remote follow-up under an intelligent medical collaborative model on quality of life and health-promoting lifestyle in patients with urinary calculi,and to assess its short-term impact on clinical outcomes.Methods:A total of 118 patients with urinary calculi admitted to a tertiary hospital in Hunan Province between August and November 2024 were recruited and randomly assigned to a control group(n=59)or an intervention group(n=59).The control group received routine departmental follow-up,while the intervention group underwent remote follow-up based on an intelligent medical collaborative model for one month.Assessments were conducted before discharge(T0),15 days after discharge(T1),and one month after discharge(T2),using the Wisconsin Stone Quality of Life Questionnaire and the Health-Promoting Lifestyle Profile.At T2,the incidence of forgotten ureteral stents(FUS),ureteral stent-related complications,unplanned readmissions,and patient satisfaction were evaluated.Results:No significant differences were observed between groups at T0 in baseline characteristics or outcome measures(all P>0.05).At T1 and T2,the intervention group had significantly higher health-related quality of life scores than the control group(P<0.05).Generalized estimating equation(GEE)analysis showed significant between-group effects(Wald's χ^(2)=22.961,P<0.001),time effects(Wald's χ^(2)=23.065,P<0.001),and interaction effects(Wald's χ^(2)=6.930,P<0.05).Similarly,at T1 and T2,the intervention group scored significantly higher on health-promoting lifestyle than the control group(P<0.05),with significant between-group effects(Wald's χ^(2)=22.936,P<0.001),time effects(Wald's χ^(2)=10.694,P<0.001),and interaction effects(Wald's χ^(2)=18.921,P<0.05).No significant differences were found between groups in the incidence of FUS,ureteral stent-related complications,or unplanned readmissions(all P>0.05).Patient satisfaction was significantly higher in the intervention group(t=4.089,P<0.001).Conclusion:Remote follow-up under an intelligent medical collaborative model helps improve quality of life,promote health-oriented lifestyles,and enhance patient satisfaction among individuals with urinary calculi.
文摘The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
基金Anusandhan National Research Foundation (ANRF), Department of Science & Technology (DST), New Delhi, India under Ramanujan award (SB/S2/RJN-159/2017)。
文摘The rising concern over electromagnetic (EM) pollution is re-sponsible for the rapid progress in EM interference (EMI) shielding and EM wave absorption in the last few years, and carbon materials with a large sur-face area and high porosity have been investigated. Compared to other car-bon materials, biomass-derived carbon (BC) are considered efficient and eco-friendly materials for this purpose. We summarize the recent advances in BC materials for both EMI shielding and EM wave absorption. After a brief overview of the synthesis strategies of BC materials and a precise out-line of EM wave interference, strategies for improving their EMI shielding and EM wave absorption are discussed. Finally, the existing challenges and the future prospects for such materials are briefly summarized.
基金Project(52174338)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20086,2021JJ30796)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023CXQD005)supported by the Central South University Innovation-Driven Research Programme,ChinaProject(23B0841)supported by the Education Department of Hunan Provincial Government,China。
文摘Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost.