摘要
Tin phosphide(Sn_(x)P_(y))is an anode for sodium-ion batteries resulting from its exceptionally high theoretical capacity in future.Nevertheless,its application will be hindered by significant volume expansion during charge discharge cycles and poor electrical conductivity.This study employs a Sn-based metal-organic framework(Sn-MOF)as a precursor for synthesizing tin phosphide nanoparticles.Then Solidago Canadensis L.,commonly known as Canadian Goldenrod,is utilized as a biomass carbon carrier to form a composite with tin phosphide nanoparticles.The biomass derived porous carbon provides additional sodium ion storage sites and serves as a structural scaffold that constrains the volumetric expansion of tin phosphide,thereby enhancing the material’s stability.The fabricated composite exhibits superior electrode electrochemical performance for sodium-ion batteries.It retains a high capacity(489.5 mA·h/g)after 100 cycles at 0.2 A/g.Even after 500 cycles at a high current density of 2 A/g,it still maintains a stable reversible capacity.This study offers a comprehensive exploration of innovative design strategies essential for the development of novel anode materials,paving the way for more sustainable and efficient sodium-ion-based energy storage systems.
磷化锡(Sn_(x)P_(y))由于其超高的理论容量可作为钠离子电池的阳极。然而,在充放电循环中体积的显著膨胀和导电性差阻碍了它的应用。本研究采用Sn基金属-有机框架(Sn-MOF)作为合成磷化锡纳米颗粒的前驱体,加拿大黄花作为生物碳载体与磷化锡纳米颗粒形成复合材料。生物质衍生的多孔碳提供了额外的钠离子存储位点,并作为一个结构支架,限制了磷化锡的体积膨胀,从而提高了材料的稳定性。本研究所制备的复合材料具有优于钠离子电池的电极电化学性能,在0.2 A/g条件下循环100次后,仍保持高容量(489.5 mA·h/g);在2 A/g的高电流密度下经过500次长时间循环,仍然保持稳定的可逆容量。
作者简介
Corresponding author:HE Zhen,PhD,Associate Professor,E-mail:hezhen@just.edu.cn,ORCID:https://orcid.org/0000-0002-2122-5482。