期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
增量式稀疏密度加权孪生支持向量回归机
1
作者 丁伟杰 顾斌杰 潘丰 《计算机工程》 CAS CSCD 北大核心 2024年第7期123-132,共10页
密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首... 密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首先,辨别新增数据是否为异常样本,并赋予有效样本适当的权重,减小异常样本对模型泛化性能的影响;其次,结合矩阵降维与主成分分析思想筛选出原始核矩阵中的一组特征列向量基代替原特征,实现核矩阵列稀疏化,以获得稀疏解;接着,借助牛顿迭代法和增量学习策略对上一时刻的模型信息进行调整,实现模型的增量更新,同时结合矩阵求逆引理避免增量更新过程中直接求解逆矩阵,进一步加快训练速度;最后,在UCI基准数据集上进行仿真实验,并与现有代表性算法进行比较。实验结果表明,ISDWTSVR继承了DWTSVR的泛化性能,在大规模数据集Bike-Sharing上,新增一个样本模型更新平均CPU时间为5.13 s,较DWTSVR缩短了97.94%,有效地解决了模型必须从头开始重新训练的问题,适用于大规模数据集的在线学习。 展开更多
关键词 孪生支持向量回归 增量学习 稀疏化 密度加权 牛顿迭代法
在线阅读 下载PDF
自适应迭代最小二乘支持向量机回归算法 被引量:14
2
作者 杨滨 杨晓伟 +3 位作者 黄岚 梁艳春 周春光 吴春国 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1621-1625,共5页
基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟... 基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟结果表明,自适应迭代最小二乘支持向量机回归算法能够自适应地确定支持向量的数目,保留了QP方法在训练SVM时支持向量的稀疏性,在相近的回归精度下,该算法极大地提高了标准LSSVR学习的速度. 展开更多
关键词 支持向量 自适应 迭代 回归 最小二乘
在线阅读 下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
3
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子群优化算法 支持向量回归
在线阅读 下载PDF
回归型加权支持向量机方法及其应用 被引量:22
4
作者 杜树新 吴铁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第3期302-306,共5页
针对各样本重要性的差异,提出了给各个样本的惩罚系数和误差要求赋予不同权重的加权支持向量机方法.给出了对偶最优化问题的描述及其SMO训练算法.在近红外光谱汽油辛烷值测定实验中,训练样本的重要性通过测试样本与该样本的空间距离来表... 针对各样本重要性的差异,提出了给各个样本的惩罚系数和误差要求赋予不同权重的加权支持向量机方法.给出了对偶最优化问题的描述及其SMO训练算法.在近红外光谱汽油辛烷值测定实验中,训练样本的重要性通过测试样本与该样本的空间距离来表征.实验表明采用加权支持向量机方法提高了汽油辛烷值的测量精度,从而说明了该方法可以提高回归估计函数的泛化能力. 展开更多
关键词 支持向量 回归 加权因子 辛烷值
在线阅读 下载PDF
基于自适应双向加权最小二乘支持向量机的超短期负荷预测 被引量:27
5
作者 王岗 姜杰 +1 位作者 唐昆明 张太勤 《电力系统保护与控制》 EI CSCD 北大核心 2010年第19期142-146,共5页
应用模糊加权最小二乘支持向量机对超短期负荷进行预测,为了体现离预测点越远的历史负荷数据对预测点负荷值的影响越不明显的特点,即'近大远小'的原则,在双向,即横向(输入样本)与纵向(训练样本集)引入时间域的隶属分布。并用快... 应用模糊加权最小二乘支持向量机对超短期负荷进行预测,为了体现离预测点越远的历史负荷数据对预测点负荷值的影响越不明显的特点,即'近大远小'的原则,在双向,即横向(输入样本)与纵向(训练样本集)引入时间域的隶属分布。并用快速留一法在线优化模型的参数,实现了相关参数的自适应选择,克服了应用固定系数进行预测的缺点。应用某地区的负荷数据进行了仿真预测,并应用不同的方法进行了对比。结果表明,所提出的方法与传统方法相比提高了超短期负荷的预测精度。 展开更多
关键词 最小二乘支持向量 双向加权 快速留一法 超短期负荷预测 自适应参数选择
在线阅读 下载PDF
基于支持向量回归的自适应逆控制方法 被引量:5
6
作者 韩璞 于萍 +1 位作者 王东风 黄保海 《华北电力大学学报(自然科学版)》 CAS 北大核心 2006年第3期31-35,共5页
将支持向量回归引入逆控制,提出了一种基于支持向量回归的自适应逆控制方法。采用支持向量回归在线辨识算法建立被控对象的逆模型,然后将逆模型作为控制器进行复制去驱动被控对象,从而完成一个自适应逆控制过程。由于支持向量回归是建... 将支持向量回归引入逆控制,提出了一种基于支持向量回归的自适应逆控制方法。采用支持向量回归在线辨识算法建立被控对象的逆模型,然后将逆模型作为控制器进行复制去驱动被控对象,从而完成一个自适应逆控制过程。由于支持向量回归是建立在小样本基础上的一种学习方法,因此较好地解决了对于线性系统自适应滤波算法存在的运算量大,权值失调及自适应过程时间长等问题。对于非线性系统,与现有的神经网络方法相比,该方法能提高收敛速度及逼近能力,而且具有更好的推广能力。仿真结果表明,应用该方法可以取得良好的控制效果,并具有较好的鲁棒性能。 展开更多
关键词 支持向量 回归 自适应逆控制 在线辨识
在线阅读 下载PDF
用于发酵过程在线建模的自适应局部最小二乘支持向量机回归方法 被引量:16
7
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2008年第8期2052-2057,共6页
提出一种基于自适应局部学习的最小二乘支持向量机回归(LSSVR)在线建模方法。考虑样本间的距离和角度信息以获得更全面合理的相似样本集,推导了采用快速留一法在线优化模型参数的准则,并给出了发酵过程在线自适应模型选择的策略。以链... 提出一种基于自适应局部学习的最小二乘支持向量机回归(LSSVR)在线建模方法。考虑样本间的距离和角度信息以获得更全面合理的相似样本集,推导了采用快速留一法在线优化模型参数的准则,并给出了发酵过程在线自适应模型选择的策略。以链激酶流加发酵过程为例,验证了所提出算法能够从过程的第2批次开始,同时对活性菌体浓度和链激酶浓度进行较准确的在线预报,较普通的局部LSSVR等建模方法具有更高的预报精度和自适应性。 展开更多
关键词 自适应局部学习 最小二乘支持向量回归 快速留一法 在线建模 发酵过程
在线阅读 下载PDF
加权支持向量回归算法 被引量:5
8
作者 孙德山 吴今培 +1 位作者 侯振挺 肖健华 《计算机科学》 CSCD 北大核心 2003年第11期38-39,共2页
1引言 Vapnik等人根据统计学习理论提出的支持向量机学习方法[1],近年来受到了国际学术界的广泛重视.支持向量机的最大特点是根据Vapnik结构风险最小化原则,尽量提高学习机的泛化能力,即由有限的训练集样本得到的小的误差能够保证对独... 1引言 Vapnik等人根据统计学习理论提出的支持向量机学习方法[1],近年来受到了国际学术界的广泛重视.支持向量机的最大特点是根据Vapnik结构风险最小化原则,尽量提高学习机的泛化能力,即由有限的训练集样本得到的小的误差能够保证对独立的测试集仍然保持小的误差. 展开更多
关键词 加权支持向量回归算法 人工智能 优化形式 模式识别
在线阅读 下载PDF
自适应加权最小二乘支持向量机的空调负荷预测 被引量:11
9
作者 赵超 戴坤成 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期55-64,共10页
为了提高建筑空调负荷的预测精度,在分析空调负荷主要影响因素的基础上提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)的建筑空调负荷预测方法。该方法根据预测误差的统计特性,采用基于改进正态分布加权规则,自适应地赋予每个... 为了提高建筑空调负荷的预测精度,在分析空调负荷主要影响因素的基础上提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)的建筑空调负荷预测方法。该方法根据预测误差的统计特性,采用基于改进正态分布加权规则,自适应地赋予每个建模样本不同的权值,以克服异常样本点对模型性能的影响。建模过程中采用粒子群优化(PSO)算法对模型参数进行优化,以进一步提高模型预测精度。基于DeST模拟数据将AWLS-SVM方法应用于南方地区某办公建筑的逐时空调负荷预测中,并与径向基神经网络(RBFNN)模型、LS-SVM模型及WLS-SVM模型作比较,其平均预测绝对误差分别降低了51.84%、13.95%和3.24%,并进一步基于实际空调负荷数据将该方法应用于另一办公建筑的逐日空调负荷预测中。预测结果表明:AWLS-SVM预测的累积负荷误差为4.56MW,亦优于其他3类模型,证明了AWLS-SVM具有较高的预测精度和较好的泛化能力,是建筑空调负荷预测的一种有效方法。 展开更多
关键词 空调负荷 预测 自适应加权 最小二乘 支持向量 粒子群优化
在线阅读 下载PDF
一种改进的自适应增强-支持向量回归机的故障预测方法 被引量:3
10
作者 邓森 景博 +2 位作者 周宏亮 朱海鹏 刘小平 《兵工学报》 EI CAS CSCD 北大核心 2012年第8期991-996,共6页
针对支持向量回归(SVR)方法对突变故障预测精度较低的问题,提出了一种改进的自适应增强算法(AdaBoost)提升SVR故障预测性能。该方法通过AdaBoost算法获取训练样本中突变点的权重并构造加权支持向量回归机增强突变点的训练,以提高对突变... 针对支持向量回归(SVR)方法对突变故障预测精度较低的问题,提出了一种改进的自适应增强算法(AdaBoost)提升SVR故障预测性能。该方法通过AdaBoost算法获取训练样本中突变点的权重并构造加权支持向量回归机增强突变点的训练,以提高对突变故障预测精度。利用自适应权重裁减方法剔除权重较小的样本点,来提高算法的训练速度。将本文方法用于发动机磨损元素的时间序列预测中,一步预测相对误差达到了0.025.实验结果表明该方法在保证预测精度的前提下有效地提高了故障预测速度。 展开更多
关键词 系统工程方法论 支持向量回归 自适应增强算法 突变故障 故障预测
在线阅读 下载PDF
基于加权支持向量回归的抢修时间估计模型 被引量:5
11
作者 尤志锋 石全 熊飞 《现代防御技术》 北大核心 2014年第4期160-166,共7页
已有的抢修时间估计模型大都印有平时维修的痕迹,不能很好的反应战场抢修的随机性、多样性、时效性等特点。分析并设计了影响抢修时间的因素及其赋值方法,用复杂性来度量抢修任务本身的属性。将抢修时间估计问题转为抢修时间对其影响因... 已有的抢修时间估计模型大都印有平时维修的痕迹,不能很好的反应战场抢修的随机性、多样性、时效性等特点。分析并设计了影响抢修时间的因素及其赋值方法,用复杂性来度量抢修任务本身的属性。将抢修时间估计问题转为抢修时间对其影响因素的非线性回归问题,引入在处理小样本、非线性问题时有较大优势的支持向量机,利用遗传算法对支持向量回归的参数进行优化;实验结论证明模型的估计精度较高、泛化能力较强;从一个新的角度估计抢修时间,结果更合理,能为抢修决策以及抢修训练提供良好的帮助。 展开更多
关键词 复杂性度量 加权支持向量回归 遗传算法 抢修时间
在线阅读 下载PDF
基于加权响应面的支持向量回归机可靠性分析方法 被引量:3
12
作者 徐友良 李洪双 吕震宙 《机械强度》 EI CAS CSCD 北大核心 2007年第5期769-773,共5页
针对非线性隐式功能函数的可靠性分析问题,提出一种基于加权线性响应面法的支持向量回归机可靠性分析方法。由于设计点周围区域对失效概率的贡献最大,所以所提方法首先采用加权线性响应面法确定设计点,然后在设计点周围进行补充抽样,把... 针对非线性隐式功能函数的可靠性分析问题,提出一种基于加权线性响应面法的支持向量回归机可靠性分析方法。由于设计点周围区域对失效概率的贡献最大,所以所提方法首先采用加权线性响应面法确定设计点,然后在设计点周围进行补充抽样,把加权线性响应面法用到的样本及补充样本作为支持向量回归机的训练样本。通过有效的组合加权线性响应面法和支持向量回归机,所提方法在设计点周围获得更好的非线性隐式功能函数的近似,从而提高了非线性隐式功能函数失效概率的估计精度。算例表明该方法具有广泛的应用前景和一定的优越性。 展开更多
关键词 失效概率 隐式功能函数 加权线性响应面 支持向量回归
在线阅读 下载PDF
基于加权支持向量回归的在线训练算法及应用 被引量:5
13
作者 刁翔 李奇 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3970-3973,共4页
针对时变系统的在线辨识问题,提出了一种加权支持向量回归方法,根据时间信息给予历史数据不同的加权,实现了精确在线训练算法,在保持精度的同时避免了采集到新样本时重复训练,大大加快了训练速度。研究了该算法的复杂度并加以改进。将... 针对时变系统的在线辨识问题,提出了一种加权支持向量回归方法,根据时间信息给予历史数据不同的加权,实现了精确在线训练算法,在保持精度的同时避免了采集到新样本时重复训练,大大加快了训练速度。研究了该算法的复杂度并加以改进。将该方法应用于氯气投加系统过程模型的在线辨识,在训练速度和精度上都较为满意,这一结果说明了该算法的有效性。 展开更多
关键词 加权支持向量回归 在线辨识 精确在线训练 氯气投加系统
在线阅读 下载PDF
基于稀疏最小二乘支持向量回归的非线性自适应波束形成 被引量:2
14
作者 王录涛 金钢 +1 位作者 徐红兵 王文平 《电子与信息学报》 EI CSCD 北大核心 2012年第9期2045-2050,共6页
该文基于最小二乘支持向量回归(LS-SVR)模型提出一种非线性自适应波束形成算法,以提高模型失配、小样本数、复杂多干扰等情况下的自适应波束形成器的鲁棒性。推导了高维矩阵逆矩阵求解的递推快速算法,实现了回归参数的实时求解。采用奇... 该文基于最小二乘支持向量回归(LS-SVR)模型提出一种非线性自适应波束形成算法,以提高模型失配、小样本数、复杂多干扰等情况下的自适应波束形成器的鲁棒性。推导了高维矩阵逆矩阵求解的递推快速算法,实现了回归参数的实时求解。采用奇异性准则实时寻找输入样本集的具有较小信息冗余度的子集,并在该子集上完成波束形成计算,使得LS-SVR波束形成的求解得以稀疏化,提高了学习效率,降低了计算复杂度与系统存储空间需求。对比仿真结果验证了所提算法的正确性和有效性。 展开更多
关键词 信号处理 鲁棒自适应波束形成 最小二乘回归 支持向量 稀疏化
在线阅读 下载PDF
自适应遗传优化的最小二乘支持向量回归机在煤粉着火温度建模中的应用 被引量:3
15
作者 韦红旗 牛中敏 +1 位作者 江文豪 叶亚兰 《燃烧科学与技术》 EI CAS CSCD 北大核心 2011年第3期191-195,共5页
针对煤粉着火温度与煤质指标间的非线性关系,提出了基于自适应遗传算法和最小二乘支持向量回归机的煤粉着火温度预测模型.通过对实验数据进行预测评判,并与常规的最小二乘支持向量回归机模型和BP神经网络模型相比较,以验证此模型的可靠... 针对煤粉着火温度与煤质指标间的非线性关系,提出了基于自适应遗传算法和最小二乘支持向量回归机的煤粉着火温度预测模型.通过对实验数据进行预测评判,并与常规的最小二乘支持向量回归机模型和BP神经网络模型相比较,以验证此模型的可靠性和精确性.结果表明,该模型是合理可行的,该模型比传统计算模型具有更好的泛化能力,能更准确地预测煤粉着火温度.采用该模型对输入变量的权重进行分析,得到的结果与机理分析一致,为解决此类问题提供了新途径. 展开更多
关键词 最小二乘支持向量回归 自适应遗传算法 煤粉 着火温度预测
在线阅读 下载PDF
加权支持向量回归在线学习方法 被引量:1
16
作者 黄细霞 石繁槐 +1 位作者 顾伟 陈善本 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第6期927-930,共4页
在标准支持向量回归在线学习的基础上,提出了一种加权支持向量回归在线学习方法(WOSVR),即加权支持向量机中针对不同样本点使用不同惩罚系数C,且不同惩罚系数C反映了样本重要性的不同,WOSVR中近期数据重要性大于历史数据重要性.使用基... 在标准支持向量回归在线学习的基础上,提出了一种加权支持向量回归在线学习方法(WOSVR),即加权支持向量机中针对不同样本点使用不同惩罚系数C,且不同惩罚系数C反映了样本重要性的不同,WOSVR中近期数据重要性大于历史数据重要性.使用基准数据Mackey-Glass混沌序列进行了相关验证实验.结果表明,加权支持向量回归在线学习方法能有效修改模型. 展开更多
关键词 支持向量 加权支持向量回归 在线学习
在线阅读 下载PDF
改进加权支持向量机回归方法器件易损性评估 被引量:4
17
作者 金焱 褚政 张瑾 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第12期171-176,共6页
加权支持向量机回归算法,几乎都是以样本输入空间中的一个重要特征量的函数来确定权值,造成了在高维特征空间中作回归可能存在较大误差。针对这一问题,提出利用高维特征空间中的欧基里德距离来确定权值的方法,构造了一种改进的加权支持... 加权支持向量机回归算法,几乎都是以样本输入空间中的一个重要特征量的函数来确定权值,造成了在高维特征空间中作回归可能存在较大误差。针对这一问题,提出利用高维特征空间中的欧基里德距离来确定权值的方法,构造了一种改进的加权支持向量机回归算法,并将其应用到电子器件高功率微波易损性评估中。仿真结果表明:该方法具有比模糊神经网络法、标准支持向量机回归算法和一般的加权支持向量机回归算法更高的预测精度。由于增加了权值的计算过程,相对于标准支持向量机回归和模糊神经网络方法,该方法的效率较低,但与一般的加权支持向量机回归算法相当。 展开更多
关键词 特征空间 欧基里德距离 加权支持向量 回归 高功率微波 电子器件 易损性
在线阅读 下载PDF
基于矢量基学习的自适应迭代最小二乘支持向量机回归算法 被引量:2
18
作者 邢永忠 吴晓蓓 徐志良 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第3期328-333,共6页
为增强最小二乘支持向量机(LS-SVM)回归建模的稀疏性、鲁棒性和实时性,在加权LS-SVM的基础上,提出了基于矢量基学习的自适应迭代回归算法。在训练过程中,该算法通过矢量基学习和自适应迭代相结合的方法得到1个小的支持向量集,同时采... 为增强最小二乘支持向量机(LS-SVM)回归建模的稀疏性、鲁棒性和实时性,在加权LS-SVM的基础上,提出了基于矢量基学习的自适应迭代回归算法。在训练过程中,该算法通过矢量基学习和自适应迭代相结合的方法得到1个小的支持向量集,同时采用加权方法确定权值以减小训练样本中非高斯噪声的影响。回归学习和动态系统辩识的仿真结果表明:在回归建模精度相似的情况下,该算法确定的支持向量为全部学习样本的4.9%~8.9%,训练时间为标准LS-SVM的0.011%~0.383%;由于能够鲁棒跟踪时变非线性系统的动态特性,适合在线实时训练;可进一步用于非线性系统的建模和实时控制研究。 展开更多
关键词 最小二乘支持向量 矢量基 自适应迭代 回归算法
在线阅读 下载PDF
基于支持向量回归机的自适应差分滤波算法研究 被引量:2
19
作者 王宏健 徐金龙 +2 位作者 刘向波 李娟 张爱华 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第7期929-935,共7页
针对差分滤波(DDF)算法存在因噪声统计特性与实际不符而导致的滤波精度降低甚至发散的问题,提出了一种基于支持向量回归机的自适应差分滤波(SVRADDF)算法.将测量值的新息协方差与理论协方差之间的差值作为支持向量回归机的输入、输出调... 针对差分滤波(DDF)算法存在因噪声统计特性与实际不符而导致的滤波精度降低甚至发散的问题,提出了一种基于支持向量回归机的自适应差分滤波(SVRADDF)算法.将测量值的新息协方差与理论协方差之间的差值作为支持向量回归机的输入、输出调节噪声统计特征的自适应因子,实时修正DDF噪声协方差,根据实际噪声变化调整噪声协方差矩阵,从而提高滤波精度.针对水下目标纯方位角跟踪系统的蒙特卡洛仿真实验表明,在相同初始噪声特性条件下,所提出的SVRADDF算法具有较好的估计效果和鲁棒性,估计精度、稳定性及收敛时间等性能明显优于单纯DDF算法. 展开更多
关键词 差分滤波器 自适应因子 支持向量回归 蒙特卡洛仿真 水下目标纯方位角跟踪
在线阅读 下载PDF
基于加权支持向量回归的火灾智能探测系统 被引量:1
20
作者 夏太武 刘金祥 彭京华 《计算机工程与应用》 CSCD 北大核心 2008年第15期208-210,共3页
火灾的早期探测是较为复杂且具有重要意义的研究课题。针对传统火灾探测方法存在的不足,提出了一种基于加权支持向量回归的火灾智能探测系统,加权支持向量回归算法克服了神经网络过学习等不足,及标准支持向量回归中未考虑各样本重要性... 火灾的早期探测是较为复杂且具有重要意义的研究课题。针对传统火灾探测方法存在的不足,提出了一种基于加权支持向量回归的火灾智能探测系统,加权支持向量回归算法克服了神经网络过学习等不足,及标准支持向量回归中未考虑各样本重要性的差异问题,实验结果表明此火灾智能探测系统优于基于神经网络和标准支持向量回归的探测系统,探测效果显著,具有良好的应用前景。 展开更多
关键词 火灾探测 加权支持向量回归 参数优化 神经网络
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部