针对无人水面艇(unmanned surface vehicle,USV)自主航行过程中的避障与遵守海事交通规则之间潜在的冲突问题,设计基于生物启发神经网络并且遵守《1972年国际海上避碰规则》(Convention on the International Regulations for Preventin...针对无人水面艇(unmanned surface vehicle,USV)自主航行过程中的避障与遵守海事交通规则之间潜在的冲突问题,设计基于生物启发神经网络并且遵守《1972年国际海上避碰规则》(Convention on the International Regulations for Preventing Collisions At Sea,1972,COLREGs)的实时避障路径规划方法。运用STM32嵌入式平台搭建包括超声波、红外激光、陀螺仪和GPS传感器的小型USV水面环境感知硬件架构,将多传感器输出的动态环境信息通过栅格地图映射到二维神经网络中。USV根据神经网络活性势图自动规划通向目标点的无碰撞路径。通过多种船舶航行交汇局面的实验,证明该方法既安全又符合COLREGs的要求。展开更多
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build...Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided.展开更多
文摘针对无人水面艇(unmanned surface vehicle,USV)自主航行过程中的避障与遵守海事交通规则之间潜在的冲突问题,设计基于生物启发神经网络并且遵守《1972年国际海上避碰规则》(Convention on the International Regulations for Preventing Collisions At Sea,1972,COLREGs)的实时避障路径规划方法。运用STM32嵌入式平台搭建包括超声波、红外激光、陀螺仪和GPS传感器的小型USV水面环境感知硬件架构,将多传感器输出的动态环境信息通过栅格地图映射到二维神经网络中。USV根据神经网络活性势图自动规划通向目标点的无碰撞路径。通过多种船舶航行交汇局面的实验,证明该方法既安全又符合COLREGs的要求。
文摘Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided.