期刊文献+

生物激励神经网络路径规划仿真研究与改进 被引量:11

Simulation Research and Improvement on Biologically Inspired Neural Network Path Planning
在线阅读 下载PDF
导出
摘要 生物激励神经网络移动机器人路径规划方法是一种新颖的方法,可用于在动态不确定环境下生成实时的避障轨迹.本文的仿真结果表明当该方法被应用于点对点路径规划时,生成路径可能不满足路径长度要尽可能短的约束条件;当该方法被应用于全覆盖路径规划时,生成路径可能不满足覆盖过程应有规律和重复覆盖应尽可能少的约束条件.本文对上述出现的不合理现象进行了理论分析并分别提出了在点对点路径规划中引进目标制导和在全覆盖路径规划中引进规则制导的改进方法.仿真结果表明改进方法是有效的. Biologically inspired neural network approach of mobile robot path planning is an original approach, which can be applied to generate real-time collision-free trajectory under dynamic uncertain environment. The simulation in this paper shows that the generated path may not accord with the restriction that the length of the path should be short to the greatest extent when the approach is applied in point to point path planning; the generated path may not accord with the restriction that the coverage process should be of regularity and the repetitious should be little to the greatest extent when the approach is applied in the complete coverage path planning. The analysis of the above unideal phenom- ena is made in the paper. And the improving methods of introducing goal navigation in point to point path planning and introducing rule navigation are individually proposed in the paper. The simulation results show that the new approaches are valid.
出处 《北京交通大学学报》 EI CAS CSCD 北大核心 2006年第2期84-88,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 清华大学智能技术与系统国家重点实验室开放课题资助项目(0413) 中国科学院自动化研究所复杂系统与智能科学重点实验室开放课题资助项目(20030105)
关键词 移动机器人 路径规划 生物激励神经网络 点对点路径规划 全覆盖路径规划 mobile robot path planning biologically inspired neural network point to point path planning complete coverage path planning
作者简介 范莉丽(1978-),女,江西南昌人,硕士生。email:lily2003 fan@126.com. 王奇志(1967-),女,辽宁沈阳人,副教授,博士。
  • 相关文献

参考文献6

二级参考文献16

  • 1马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 2孙增圻等.智能控制理论与技术[M].北京:清华大学出版社,..
  • 3Borenstein J, Koren Y. The vector field histogram - fast obstacle avoidance for mobile robots[ J]. IEEE Journal of Robotics and Automation ,1991,7(3) : 278 -288.
  • 4Kehtaraavaz N, Grisworld, Lee J. Visual control for an autonomous vehicle(BART) -the vehicle following problem[J]. IEEE Transcation on Vehicular Technology. 1991,40(3) :654 -662.
  • 5Fujimori A, Nikiforuk P N, Gupta M M. Adaptive navigation of mobile robots with obstacle avoidance[ J]. IEEE Transcations On Robotics and Automation. 1997,13(4) :596 -601.
  • 6Fierro R, Lewis F L. Control of a nonholonomic mobile robot using neural networks[ J ]. IEEE Trascation on Neural Networks. 1998,9 (4) :589 -600.
  • 7Sarkar N, Yun X P, Kumar V. Control of mechanical systems with rolling constrains: application to dynamic control of mobile robots[ J]. Int J of Robotics Research, 1994,3( 1 ) :55 - 69.
  • 8H J Rytter, et al. Topology-conserving maps for learning visuo-motor-coordination. Neural Networks, 1989,2: 159-189
  • 9L Li, H ogmen. Visual guided motor control: Adaptive sensorimotor mapping with on-line visual-error correction. in proc World Congr, Neural Networks, 1994. 127-134
  • 10F Muniz, et al. Neural controller for a mobile robot in a nonstationary environment. In Proc Second IFAC Conf Intell Autonom veh, Helsmki, Finland, June 1995. 279-284

共引文献80

同被引文献106

引证文献11

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部