期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
基于最大相关峭度解卷积和变分模态分解的风电机组轴承故障诊断方法 被引量:13
1
作者 赵洪山 李浪 《太阳能学报》 EI CAS CSCD 北大核心 2018年第2期350-358,共9页
针对风电机组轴承故障特征难以提取的问题,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和变分模态分解(variational mode decomposition,VMD)的轴承故障诊断方法。首先利用MCKD算法对轴承... 针对风电机组轴承故障特征难以提取的问题,提出一种基于最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)和变分模态分解(variational mode decomposition,VMD)的轴承故障诊断方法。首先利用MCKD算法对轴承振动信号进行降噪,然后对降噪后的信号进行VMD分解,并利用峭度指标筛选出敏感本征模态函数(intrinsic mode function,IMF),最后通过分析敏感IMF包络谱中幅值突出的频率成分判断故障类型。仿真和实验分析结果表明该方法可成功地提取出故障特征频率,实现风电机组轴承故障的有效诊断。 展开更多
关键词 风电机组 轴承 故障 最大相关峭度卷积 变分模态分
在线阅读 下载PDF
基于最大相关峭度解卷积的滚动轴承早期故障诊断 被引量:3
2
作者 荆双喜 李新华 +2 位作者 朱昆鸣 冷军发 罗晨旭 《河南理工大学学报(自然科学版)》 CAS 北大核心 2018年第1期81-85,共5页
滚动轴承早期故障振动信号微弱,并且受环境噪声影响严重,特征信号提取困难。针对这一问题,提出了最大相关峭度解卷积方法来提取轴承故障的特征信号。通过计算信号的最大相关峭度值,估算出感兴趣的解卷积周期T,选择合适的时延步数M,对故... 滚动轴承早期故障振动信号微弱,并且受环境噪声影响严重,特征信号提取困难。针对这一问题,提出了最大相关峭度解卷积方法来提取轴承故障的特征信号。通过计算信号的最大相关峭度值,估算出感兴趣的解卷积周期T,选择合适的时延步数M,对故障信号做最大相关峭度解卷积,并对最大相关峭度解卷积滤波后的信号进行包络解调,提取出滚动轴承的故障特征,实现了滚动轴承的早期故障诊断。仿真和实验验证了该方法在滚动轴承故障诊断中的有效性。 展开更多
关键词 滚动轴承 早期故障 最大相关峭度卷积 包络
在线阅读 下载PDF
基于谱峭度和最大相关峭度解卷积的滚动轴承复合故障特征分离方法 被引量:21
3
作者 胡爱军 赵军 +1 位作者 孙尚飞 黄申申 《振动与冲击》 EI CSCD 北大核心 2019年第4期158-165,共8页
针对振动信号中复合故障特征难以准确分离的问题,提出了一种融合谱峭度(SK)和最大相关峭度解卷积(MCKD)的复合故障分离方法。对复合故障信号做谱峭度分析,根据选择的各共振频带对信号进行带通滤波,提取出多个故障信号;对提取的各信号做... 针对振动信号中复合故障特征难以准确分离的问题,提出了一种融合谱峭度(SK)和最大相关峭度解卷积(MCKD)的复合故障分离方法。对复合故障信号做谱峭度分析,根据选择的各共振频带对信号进行带通滤波,提取出多个故障信号;对提取的各信号做包络解调分析,对能提取出单一故障特征的振动信号完成分离过程;对未提取出单一故障特征的振动信号最后做最大相关峭度解卷积处理;采用改进的轴承复合故障仿真模型验证了方法的有效性。实测滚动轴承内、外圈复合故障信号分析结果表明,该方法能够实现复合故障的准确分离。 展开更多
关键词 滚动轴承 复合故障 特征分离 峭度(SK) 最大相关峭度卷积(mckd)
在线阅读 下载PDF
基于自适应最大相关峭度解卷积的滚动轴承多故障诊断 被引量:17
4
作者 胡爱军 赵军 《振动与冲击》 EI CSCD 北大核心 2019年第22期171-177,共7页
滚动轴承存在多个故障时,由于各故障响应之间相互干扰,会使包络谱诊断效果不佳。最大相关峭度解卷积(MCKD)是用于增强周期性脉冲的有效工具,然而,MCKD的滤波器长度参数和移位数需要人工设定,并且在复杂条件下运行的轴承对参数的要求较... 滚动轴承存在多个故障时,由于各故障响应之间相互干扰,会使包络谱诊断效果不佳。最大相关峭度解卷积(MCKD)是用于增强周期性脉冲的有效工具,然而,MCKD的滤波器长度参数和移位数需要人工设定,并且在复杂条件下运行的轴承对参数的要求较高。针对此情况,提出了一种自适应最大相关峭度解卷积的滚动轴承多故障诊断方法。该方法以最大相关峭度解卷积信号的包络谱的谱相关峭度值作为目标函数,采用人工鱼群算法,自适应得到MCKD的最优参数,利用参数优化的最大相关峭度解卷积实现滚动轴承多故障分析。滚动轴承多故障仿真及轴承内圈多故障实验分析表明,该方法可以有效提取故障特征,实现滚动轴承多故障的准确诊断。 展开更多
关键词 滚动轴承 多故障 人工鱼群算法 自适应 最大相关峭度卷积(mckd)
在线阅读 下载PDF
最大相关峭度解卷积的改进及在往复压缩机气阀故障诊断中的应用
5
作者 王金东 李云峰 +1 位作者 赵海洋 李彦阳 《石油化工设备技术》 CAS 2021年第6期35-40,52,I0003,I0004,共9页
针对往复压缩机气阀振动信号受强烈气体波动干扰的特性,提出了一种基于改进最大相关峭度解卷积和精细复合多尺度模糊熵的往复压缩机气阀故障诊断方法。使用改进最大相关峭度解卷积对往复压缩机气阀振动信号进行解卷积处理,可有效地提取... 针对往复压缩机气阀振动信号受强烈气体波动干扰的特性,提出了一种基于改进最大相关峭度解卷积和精细复合多尺度模糊熵的往复压缩机气阀故障诊断方法。使用改进最大相关峭度解卷积对往复压缩机气阀振动信号进行解卷积处理,可有效地提取信号中的冲击成分;对处理后的信号进行精细复合多尺度模糊熵量化分析,获得往复压缩机气阀故障诊断的特征向量,将其输入到支持向量机对故障特征进行识别。往复压缩机气阀故障实验数据分析表明:该方法能够有效地提取出往复压缩机气阀的故障信息,实现往复压缩机气阀故障的精确诊断。 展开更多
关键词 最大相关峭度卷积 往复压缩机 精细复合多尺度模糊熵 气阀 故障诊断
在线阅读 下载PDF
基于最大相关峭度解卷积和谱峭度的滚动轴承声信号故障特征增强 被引量:3
6
作者 高锐文 胡定玉 +3 位作者 师蔚 廖爱华 余佑民 丁亚琦 《噪声与振动控制》 CSCD 北大核心 2022年第2期102-107,共6页
采用滚动轴承的声学信号进行状态监测及故障诊断时,环境噪声、传递路径以及其它设备噪声会严重干扰目标信息的提取。针对这一问题,提出一种基于最大相关峭度解卷积和快速谱峭度图的滚动轴承声信号故障特征增强方法。该方法首先利用最大... 采用滚动轴承的声学信号进行状态监测及故障诊断时,环境噪声、传递路径以及其它设备噪声会严重干扰目标信息的提取。针对这一问题,提出一种基于最大相关峭度解卷积和快速谱峭度图的滚动轴承声信号故障特征增强方法。该方法首先利用最大相关峭度解卷积算法对滚动轴承声信号进行解卷积,增强信号中每旋转一周时出现的脉冲信号,削弱噪声信号;然后将谱峭度作为指标,利用快速谱峭度对信号进行滤波分析,获得包含轴承故障信息最丰富的频带;最后对该频带进行包络提取特征频率。仿真及实验结果表明,相较于传统的包络解调,该方法在滚动轴承声信号故障特征提取方面具有更好的降噪性能和故障特征增强效果。 展开更多
关键词 故障诊断 滚动轴承 最大相关峭度卷积 快速谱峭度
在线阅读 下载PDF
基于最大相关峭度解卷积的滚动轴承复合故障诊断方法 被引量:7
7
作者 张永鑫 宋晓庆 +2 位作者 张晓冬 王志阳 冷军发 《噪声与振动控制》 CSCD 2020年第4期98-102,160,共6页
受环境噪声、传递路径、信号衰减以及源信号本身比较微弱的影响,滚动轴承早期微弱冲击性故障的信号特征难以提取。近年来,最小熵解卷积(Minimum Entropy Deconvolution,MED)已经成功应用在旋转机械故障检测中来提取振动冲击。MED方法的... 受环境噪声、传递路径、信号衰减以及源信号本身比较微弱的影响,滚动轴承早期微弱冲击性故障的信号特征难以提取。近年来,最小熵解卷积(Minimum Entropy Deconvolution,MED)已经成功应用在旋转机械故障检测中来提取振动冲击。MED方法的提取过程是一个迭代选择的过程,通过迭代选择一个有限脉冲响应使信号的熵最小,从而对信号进行滤波。但是该方法有一定的局限性:其对于单一冲击的信号解卷积效果良好,但是处理具有强噪声或者多个冲击源共同作用时的信号很困难。为了解决这个问题,提出新的解卷积方法:最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD),可有效利用滚动轴承故障周期性冲击的特点,其与MED相比,克服了单一冲击的限制,对两种冲击源甚至是多种共同卷积的解卷积具有更好的特征提取效果。仿真和实验对比验证了该方法具有良好的降噪和故障特征增强效果。 展开更多
关键词 故障诊断 滚动轴承复合故障 最小熵卷积 最大相关峭度卷积 特征提取
在线阅读 下载PDF
采用参数自适应最大相关峭度解卷积的滚动轴承故障特征提取 被引量:14
8
作者 张守京 慎明俊 +1 位作者 杨静雯 吴芮 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第3期75-83,共9页
针对滚动轴承故障特征信号因受传输路径和强噪声的干扰而导致周期性故障脉冲难以提取以及最大相关峭度解卷积(MCKD)参数依赖人为经验选择的问题,提出一种参数自适应MCKD的滚动轴承故障特征提取方法。以解卷积信号的包络谱熵作为适应度函... 针对滚动轴承故障特征信号因受传输路径和强噪声的干扰而导致周期性故障脉冲难以提取以及最大相关峭度解卷积(MCKD)参数依赖人为经验选择的问题,提出一种参数自适应MCKD的滚动轴承故障特征提取方法。以解卷积信号的包络谱熵作为适应度函数,利用麻雀搜索算法强大的全局搜索能力自适应地选择MKCD方法的最佳参数组合;利用参数优化后的MCKD方法对故障信号进行解卷积运算,滤除掉信号中的噪声,以突显由轴承故障激发的周期性故障脉冲;对解卷积信号进行包络解调,以提取出轴承故障特征频率成分。仿真结果表明,与遗传算法和粒子群算法相比,采用麻雀搜索算法可使MCKD参数在优化中具有更快的收敛速度和更强的稳定性。对滚动轴承进行全寿命周期实验及对工程案例的实验结果表明:所提方法能自适应提取强噪声中的轴承周期性故障脉冲成分,信号的峭度提高了3倍,鲁棒性更强;与直接谱分析和快速谱峭度方法相比,所提方法能完整提取信号中的故障特征频率成分,成功率可达100%,有效提高了滚动轴承的故障诊断精度。 展开更多
关键词 滚动轴承 故障脉冲 最大相关峭度卷积 麻雀搜索算法 直接谱分析 快速谱峭度
在线阅读 下载PDF
一种基于多点峭度谱和最大相关峭度解卷积的滚动轴承故障诊断方法 被引量:10
9
作者 刘文朋 廖英英 +2 位作者 杨绍普 刘永强 顾晓辉 《振动与冲击》 EI CSCD 北大核心 2019年第2期146-151,163,共7页
针对最大相关峭度解卷积(MCKD)方法需要预知准确的滚动轴承故障特征周期的不足,提出一种多点峭度谱(Mkurt spectrum)和MCKD相结合的滚动轴承故障诊断方法。利用多点峭度谱对采样信号进行处理,通过比较不同周期下解卷积结果输出的信号的... 针对最大相关峭度解卷积(MCKD)方法需要预知准确的滚动轴承故障特征周期的不足,提出一种多点峭度谱(Mkurt spectrum)和MCKD相结合的滚动轴承故障诊断方法。利用多点峭度谱对采样信号进行处理,通过比较不同周期下解卷积结果输出的信号的多点峭度谱,对预先估计的故障特征周期进行修正,再将优化得到的故障周期的精确取值输入到MCKD算法中,增强原信号中周期性故障冲击特征,并通过包络解调来诊断故障类型。通过对仿真信号、6205轴承外圈故障和铁路货车轮对轴承复合故障的试验信号的分析表明:即使在未知准确转速的条件下,该方法依然可以有效地实现滚动轴承的故障诊断,具有较高的工程应用价值。 展开更多
关键词 滚动轴承 故障诊断 多点峭度 最大相关峭度卷积(mckd) 复合故障
在线阅读 下载PDF
基于最大相关峭度解卷积行星齿轮箱微弱故障诊断 被引量:6
10
作者 刘峰 任丽佳 《噪声与振动控制》 CSCD 北大核心 2022年第5期154-158,共5页
最小熵解卷积(MED)是一种常规的微弱故障特征提取方法,对局部故障脉冲有比较好的提取效果,但是对于含有周期性故障脉冲的振动信号,故障特征识别率比较低。微弱故障时候的行星齿轮箱产生的振动信号通常是周期性的,MED不能取得比较好的识... 最小熵解卷积(MED)是一种常规的微弱故障特征提取方法,对局部故障脉冲有比较好的提取效果,但是对于含有周期性故障脉冲的振动信号,故障特征识别率比较低。微弱故障时候的行星齿轮箱产生的振动信号通常是周期性的,MED不能取得比较好的识别效果。针对行星齿轮微弱故障特征难以提取的问题,将最大相关峭度解卷积(MCKD)方法应用到行星齿轮箱微弱故障特征提取中。MCKD避免了最小熵解卷积对周期性冲击识别度低的缺点,同时可以有效抑制行星齿轮箱中谐波和噪声分量,准确地识别出行星齿轮箱所处状态。为了验证该方法在行星齿轮箱中的应用价值,将两种方法分别应用在传动系统综合诊断平台收集到的振动信号中,结果表明MCKD算法对于行星齿轮箱微弱故障识别有比较好的效果。 展开更多
关键词 故障诊断 行星齿轮箱 微弱故障 最小熵卷积 最大相关峭度卷积
在线阅读 下载PDF
基于最大相关谱峭度解卷积的滚动轴承故障周期冲击特征提取 被引量:2
11
作者 许自立 许贡 +1 位作者 李进 乔印虎 《中国测试》 CAS 北大核心 2018年第5期31-36,共6页
滚动轴承广泛应用于重型旋转机械支撑和传送负载,经常工作在低速、重载等恶劣工况下,特别容易损坏,从而导致机械设备停运停产的事故,因此有必要提出一种基于最大相关谱峭度解卷积的滚动轴承故障周期冲击特征提取方法。该方法利用轴承运... 滚动轴承广泛应用于重型旋转机械支撑和传送负载,经常工作在低速、重载等恶劣工况下,特别容易损坏,从而导致机械设备停运停产的事故,因此有必要提出一种基于最大相关谱峭度解卷积的滚动轴承故障周期冲击特征提取方法。该方法利用轴承运行过程中局部故障激发起的周期性冲击特征,通过最大化相关谱峭度选择最佳有限冲击响应滤波器参数;通过迭代卷积运算,消除振动信号中的噪声,提取出滚动轴承故障激发起的周期性冲击特征;依据冲击特征的周期判断轴承故障所在位置,从而实现轴承故障诊断。通过仿真和滚动轴承实验数据验证提出方法的可行性,并与广泛应用的集总经验模式分解方法提取结果进行对比,结果表明该文提出的方法在轴承故障诊断中展现出更好的优势。 展开更多
关键词 相关峭度 卷积 轴承故障诊断 集总经验模式分
在线阅读 下载PDF
基于循环相关和LPSO算法的自适应MCKD方法的滚动轴承早期故障特征提取 被引量:9
12
作者 陈昆弘 刘小峰 《振动与冲击》 EI CSCD 北大核心 2017年第22期80-85,157,共7页
针对强噪声情况下滚动轴承早期故障信号特征难以提取的问题,提出了MCKD与对称差分能量算子解调的特征提取方法。MCKD算法进行滤波时,滤波器长度L和故障周期T对滤波效果的影响至关重要,因此提出基于循环相关和LPSO算法结合的自适应的MCK... 针对强噪声情况下滚动轴承早期故障信号特征难以提取的问题,提出了MCKD与对称差分能量算子解调的特征提取方法。MCKD算法进行滤波时,滤波器长度L和故障周期T对滤波效果的影响至关重要,因此提出基于循环相关和LPSO算法结合的自适应的MCKD算法,自动搜寻MCKD算法所需最优参数;原信号经滤波后,故障特征被明显突出,为了剔除剩余噪声,对滤波后信号进一步做对称差分能量算子解调,剔除剩余噪声同时获得解调谱,进而提取滚动轴承的早期故障。实验分析验证了该方法的有效性。 展开更多
关键词 循环相关 局部粒子群优化 最大相关峭度卷积 对称能量算子 早期故障 特征提取
在线阅读 下载PDF
基于多个时间点联合解相关的卷积盲源分离 被引量:2
13
作者 李素林 夏崔春 钱进 《声学技术》 EI CSCD 北大核心 2005年第1期18-20,共3页
实际信号的混合均为卷积混合,且信号是非平稳的。盲源分离的目标就是找到一组分离滤波器,使得源信号的估计信号互相统计独立。结合信号的非平稳性,利用二阶解相关原理,文章阐明了一种在频域实现卷积混合的盲源分离算法,并且考虑了噪声... 实际信号的混合均为卷积混合,且信号是非平稳的。盲源分离的目标就是找到一组分离滤波器,使得源信号的估计信号互相统计独立。结合信号的非平稳性,利用二阶解相关原理,文章阐明了一种在频域实现卷积混合的盲源分离算法,并且考虑了噪声对分离性能的影响。为了避免频点排列次序的不确定性,利用了多阶段盲源分离思想。利用该算法,对两路混合的实录水声信号进行盲分离,得到了两路源信号的估计信号,通过对估计信号的分析,利用信噪比提高率这一标准,验证了该算法的有效性。该算法收敛速度快,精度高,可用于浅海环境下实录水声混合信号的盲分离。 展开更多
关键词 盲源分离 卷积 相关 时间点 统计独立 非平稳性 相关原理 分离算法 分离性能 不确定性 排列次序 水声信号 收敛速度 混合信号 浅海环境 源信号 盲分离 滤波器 估计 多阶段 信噪比 实录
在线阅读 下载PDF
基于小波包分解和MCKD的水泵轴承故障诊断方法
14
作者 蒋辉 邱露鹏 蒋强 《沈阳理工大学学报》 CAS 2024年第2期38-44,共7页
针对水泵在实际应用中所处环境复杂、故障信号包含大量噪声难以提取的问题,提出了一种结合小波包分解和最大相关峭度解卷积(MCKD)的水泵轴承故障诊断方法。首先,应用小波包分解对原始信号进行分解,根据分解信号的信噪比和标准差选取合... 针对水泵在实际应用中所处环境复杂、故障信号包含大量噪声难以提取的问题,提出了一种结合小波包分解和最大相关峭度解卷积(MCKD)的水泵轴承故障诊断方法。首先,应用小波包分解对原始信号进行分解,根据分解信号的信噪比和标准差选取合适的分量进行重构;然后,采用MCKD算法对重构信号降噪处理,突出信号中的有效周期冲击成分;最后,对处理好的信号进行包络谱分析,从包络谱中得到故障频率。实验结果表明,小波包分解和MCKD方法能够有效提取水泵轴承故障特征频率,可为工程实际应用提供参考。 展开更多
关键词 最大相关峭度卷积 小波包分 故障诊断 轴承
在线阅读 下载PDF
基于MED与自相关谱峭度图的滚动轴承故障诊断方法 被引量:19
15
作者 王兴龙 郑近德 +3 位作者 潘海洋 童靳于 刘庆运 丁克勤 《振动与冲击》 EI CSCD 北大核心 2020年第18期118-124,131,共8页
滚动轴承振动信号往往信噪比较低,且具有较强的非高斯噪声,如何选择合适的解调频带一直是故障诊断的难点。自相关谱峭度图(Autogram)是新提出的一种最优频带选择方法,通过计算解调信号的平方包络的无偏自相关的峭度,能够有效地检测到解... 滚动轴承振动信号往往信噪比较低,且具有较强的非高斯噪声,如何选择合适的解调频带一直是故障诊断的难点。自相关谱峭度图(Autogram)是新提出的一种最优频带选择方法,通过计算解调信号的平方包络的无偏自相关的峭度,能够有效地检测到解调频带及其故障频率;但此方法易受到噪声干扰,故障特征识别不明显;基于此,提出了一种基于最小熵解卷积(MED)与Autogram的滚动轴承故障诊断方法;该方法通过MED去除噪声,在得到最佳频带的同时,能够有效地突显故障特征。通过分析仿真信号及实验数据,将所提方法与快速谱峭度及现有方法进行了对比,结果表明,所提故障诊断方法能够准确地检测到解调频带及故障频率,突出故障特征和提高故障检测效果。 展开更多
关键词 最小熵卷积(MED) 相关峭度 快速谱峭度 调频带 滚动轴承
在线阅读 下载PDF
基于自相关分析与MCKD的滚动轴承早期故障诊断 被引量:26
16
作者 祝小彦 王永杰 《振动与冲击》 EI CSCD 北大核心 2019年第24期183-188,共6页
滚动轴承早期故障信号通常呈现出非平稳性、弱调制性、故障特征成分不突出以及背景噪声强烈等特点,有效提取轴承故障特征比较困难,因此难以准确判断轴承的故障位置。针对这一问题,提出了基于自相关分析与最大相关峭度解卷积(MCKD)算法... 滚动轴承早期故障信号通常呈现出非平稳性、弱调制性、故障特征成分不突出以及背景噪声强烈等特点,有效提取轴承故障特征比较困难,因此难以准确判断轴承的故障位置。针对这一问题,提出了基于自相关分析与最大相关峭度解卷积(MCKD)算法的滚动轴承故障诊断方法:①利用有偏估计自相关分析方法对轴承信号作初步分析,抑制信号中噪声成分;利用MCKD算法对所得信号作进一步分析,突出信号中的原始冲击成分并进一步去噪,使得信号的信噪比进一步提高;③对信号进行包络谱分析,通过包络谱中的主导频率成分与滚动轴承各元件的故障特征频率对比从而判断轴承的故障位置。仿真数据和实测数据分析结果证明,所提方法能够有效提取故障信号中的特征信息,具有一定的有效性。 展开更多
关键词 最大相关峭度卷积(mckd) 相关分析 滚动轴承 早期故障诊断 特征提取
在线阅读 下载PDF
基于改进PSO-VMD-MCKD的滚动轴承故障诊断 被引量:1
17
作者 宿磊 刘智 +2 位作者 顾杰斐 李可 薛志钢 《噪声与振动控制》 CSCD 北大核心 2024年第4期118-124,共7页
针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法。首先基于VMD方法... 针对滚动轴承信号在强噪声背景下故障特征提取困难的问题,提出一种变分模态分解(Variational Modal Decomposition,VMD)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的故障诊断方法。首先基于VMD方法选取故障信号的最优模态分量,然后采用MCKD算法增强最优分量信号中的冲击成分,最后通过包络谱分析提取滚动轴承的故障频率。利用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD算法中的参数α和K以及MCKD算法中的参数L和M进行寻优,并对PSO算法中惯性因子和学习因子的更新方法加以改进,以提高参数寻优过程的收敛速度。仿真分析和试验结果表明,所提出的诊断方法可以有效提取被强噪声淹没的滚动轴承故障特征。 展开更多
关键词 故障诊断 滚动轴承 变分模态分 最大相关峭度卷积 粒子群优化
在线阅读 下载PDF
基于MCKD的海上风机齿轮箱轴承故障诊断方法 被引量:1
18
作者 郭奇 祁雷 +2 位作者 赵杨 徐晴晴 刘浩 《油气田地面工程》 2024年第6期62-67,72,共7页
海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增... 海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增强包络谱对轴承的故障特征频率进行提取,从而实现对轴承的故障诊断。将该方法应用到海上风机齿轮箱轴承的模拟信号和实测信号中,研究结果表明:该方法对海上强噪声环境下齿轮箱轴承故障的特征提取和诊断具有良好的效果。 展开更多
关键词 海上风机齿轮箱 轴承 故障诊断 最大相关峭度卷积 增强包络谱
在线阅读 下载PDF
基于优化小波包分解的航空发动机主轴承故障特征增强方法
19
作者 张振鹏 栾孝驰 +2 位作者 沙云东 杨杰 赵奉同 《装备环境工程》 CAS 2024年第9期42-49,共8页
目的 解决航空发动机主轴承微弱故障特征在高背景噪声环境和变转速工况下难识别的问题,提出基于优化小波包分解的航空发动机主轴承故障特征增强方法。方法 首先通过计算阶次分析方法,将振动时域信号转化为振动角域信号;然后对振动角域... 目的 解决航空发动机主轴承微弱故障特征在高背景噪声环境和变转速工况下难识别的问题,提出基于优化小波包分解的航空发动机主轴承故障特征增强方法。方法 首先通过计算阶次分析方法,将振动时域信号转化为振动角域信号;然后对振动角域信号进行小波包分解,并引入有效故障特征能量比和优化最大相关峭度解卷积方法对信号故障特征进行增强,通过循环迭代逐步提取故障特征;最后对信号进行包络分析,并与理论轴承故障阶次进行对比,实现轴承故障诊断。结果 通过对整机试车条件下航空发动机主轴承外圈压坑故障实验数据进行分析,验证了该方法能够有效增强振动信号中的故障特征信息。结论 与传统WPD方法相比,该方法可以有效增强主轴承故障特征阶次,实现高背景噪声环境和变转速工况下的故障诊断。 展开更多
关键词 主轴承 优化小波包分 最大相关峭度卷积 计算阶次分析 故障特征增强 故障分析
在线阅读 下载PDF
基于参数优化VMD-MCKD的滚动轴承早期故障诊断 被引量:1
20
作者 陶翰铭 张栋良 +1 位作者 吴坤鹏 吴杰 《噪声与振动控制》 CSCD 北大核心 2024年第6期156-164,共9页
针对滚动轴承早期故障特征易受强背景噪声影响而难以提取的问题,提出一种基于阿基米德算法(Archimedes Optimization Algorithm,AOA)优化变分模态分解(Variational Mode Decomposition,VMD)和相关最大峭度解卷积(Maximum Correlated Kur... 针对滚动轴承早期故障特征易受强背景噪声影响而难以提取的问题,提出一种基于阿基米德算法(Archimedes Optimization Algorithm,AOA)优化变分模态分解(Variational Mode Decomposition,VMD)和相关最大峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)参数的滚动轴承故障诊断方法。首先,将不同移位数下相关峭度和现有指标进行对比,选取最优相关峭度指标作为目标函数优化VMD算法中分解层数K和惩罚因子,并基于VMD分解结果选取最优分量;其次,提出一种加权包络谱峭度作为目标函数优化MCKD算法中滤波器长度L和冲击信号周期T,基于MCKD算法增强最优分量中的冲击成分;最后,通过包络谱分析判断滚动轴承故障类型。仿真和试验结果表明,该方法可以有效提取并增强故障中的冲击成分,实现在强背景噪声下的滚动轴承早期故障诊断。 展开更多
关键词 故障诊断 滚动轴承 阿基米德算法 变分模态分 最大相关峭度卷积
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部