期刊文献+
共找到835篇文章
< 1 2 42 >
每页显示 20 50 100
决策智能中的时间序列预测大模型
1
作者 邵泽志 余澄庆 +2 位作者 李雨杰 王飞 徐勇军 《指挥与控制学报》 北大核心 2025年第2期146-157,共12页
不同场景下时序数据的异质性极大地影响了智能决策中时序预测算法的泛化性和有效性,对其应用构成了重要阻碍。时序预测大模型是解决这一挑战的重要技术。综合了时序预测领域的最新研究动态,从模态视角自上而下地探讨了时序预测大模型的... 不同场景下时序数据的异质性极大地影响了智能决策中时序预测算法的泛化性和有效性,对其应用构成了重要阻碍。时序预测大模型是解决这一挑战的重要技术。综合了时序预测领域的最新研究动态,从模态视角自上而下地探讨了时序预测大模型的4种实现思路:基于提示的方法、基于微调的方法、基于对齐的方法以及时序预测基础模型。梳理了时序预测大模型构建过程中的核心要素和可用技术。探讨了未来的重要挑战和研究方向。 展开更多
关键词 时间序列 大语言模型 基础模型 预测
在线阅读 下载PDF
功率谱密度引导下的时间序列预测模型
2
作者 梁立河 崔锦莹 +3 位作者 张雪松 高妮玲 赵涓涓 强彦 《计算机工程与设计》 北大核心 2025年第4期1087-1095,共9页
为增强时间序列预测模型的高解释性、高稳定性、高准确性,从能量的角度分析,提出一种基于功率谱密度的时间序列预测编解码器模型(PSDformer)。通过引入多粒度能量选择模块、注意力知识引导模块和序列去噪分解模块,能够有效提取并融合序... 为增强时间序列预测模型的高解释性、高稳定性、高准确性,从能量的角度分析,提出一种基于功率谱密度的时间序列预测编解码器模型(PSDformer)。通过引入多粒度能量选择模块、注意力知识引导模块和序列去噪分解模块,能够有效提取并融合序列的长短期特征、实现未来“先验”信息的有效传递和降低异常数据对序列预测的负面影响,提高模型的预测准确性。在3个数据集上进行的实验验证了PSDformer模型的可行性和有效性。 展开更多
关键词 时间序列预测 功率谱密度 编解码器模型 多粒度能量选择 注意力知识引导 序列去噪分解 长短期特征 “先验”信息
在线阅读 下载PDF
基于Transformer时间序列分块模型的CO_(2)驱油藏静压预测方法
3
作者 李春雷 杨河山 +3 位作者 张红霞 曹裕民 姜兴兴 靳彩霞 《油气地质与采收率》 北大核心 2025年第4期126-133,共8页
油藏静压是油田开发研究中的一项重要基础资料,其获取条件苛刻,样本数量极少,目前根据生产过程中的动压数据利用经验法估算静压,数据误差较大。针对上述问题,借助深度学习理论,提出一种基于Transformer时间序列分块模型的CO_(2)驱油藏... 油藏静压是油田开发研究中的一项重要基础资料,其获取条件苛刻,样本数量极少,目前根据生产过程中的动压数据利用经验法估算静压,数据误差较大。针对上述问题,借助深度学习理论,提出一种基于Transformer时间序列分块模型的CO_(2)驱油藏静压预测方法。根据相关性分析筛选模型参数,利用迭代插补器填充样本,构建静压预测样本集;依据通道独立原则,将多变量时间序列划分为单变量时间序列,引入时间序列分块机制将时间序列切分为子序列块以捕获局部特征;基于Transformer模型架构,利用多头自注意力机制提取特征,自监督学习机制提升对复杂动态特性的捕捉能力,实现CO_(2)驱油藏静压的预测。研究结果表明,所提出的模型可以实现对未停产井组每口井油层中部静压的预测,并显著提高预测的准确性。 展开更多
关键词 深度学习 时间序列分块模型 油藏静压 预测模型 TRANSFORMER
在线阅读 下载PDF
片烟库存预测研究中组合时间序列模型的应用
4
作者 褚旭 胡宗玉 +3 位作者 许强 张金召 杜航 胡波 《天津农业科学》 2025年第7期41-47,55,共8页
为探讨组合时间序列模型在片烟库存预测中的应用效果,通过收集某卷烟工业企业往期片烟库存数据,建立月度片烟库存的单一和组合时间序列预测模型,并对比不同模型的预测效果。结果表明:片烟库存数据的月度和年度时序图均具有明显的时间周... 为探讨组合时间序列模型在片烟库存预测中的应用效果,通过收集某卷烟工业企业往期片烟库存数据,建立月度片烟库存的单一和组合时间序列预测模型,并对比不同模型的预测效果。结果表明:片烟库存数据的月度和年度时序图均具有明显的时间周期性;基于指数平滑法建立的预测模型无法准确判断真实值上升或下降的趋势,预测的RMSE、MAE和MAPE值分别为1.93、1.47、3.51%;基于自适应滤波法建立的预测模型随着数据样本的增加,预测精度有所下降,预测的RMSE、MAE和MAPE值分别为0.32、0.26、0.61%;指数平滑组合时间序列模型和自适应滤波组合时间序列模型预测的RMSE、MAE和MAPE值分别为0.91、0.69、1.75%和0.28、0.21、0.52%。综上,组合模型拟合效果更好,能够更好地反映片烟库存的真实水平,其中以自适应滤波组合模型的效果更佳。 展开更多
关键词 片烟 库存预测 时间序列 组合模型
在线阅读 下载PDF
结合高斯噪声的回声状态网络模型及其时间序列预测性能
5
作者 王梓鉴 赵慧 +1 位作者 郑明文 李鑫 《济南大学学报(自然科学版)》 北大核心 2025年第1期129-134,142,共7页
为了模拟回声状态网络模型在时间序列预测实例中的影响因素,在回声状态网络模型的储备池层引入高斯噪声,构建结合高斯噪声的回声状态网络模型;利用公式推导分析所提模型的非线性性质;采用股票序列数据与Logistic混沌序列数据进行实验验... 为了模拟回声状态网络模型在时间序列预测实例中的影响因素,在回声状态网络模型的储备池层引入高斯噪声,构建结合高斯噪声的回声状态网络模型;利用公式推导分析所提模型的非线性性质;采用股票序列数据与Logistic混沌序列数据进行实验验证和对比分析。结果表明,本文所提模型的预测效果优于回声状态网络模型、压缩感知回声状态网络模型和反向传播神经网络模型,股票收盘价预测、Logistic混沌序列预测的平均绝对误差均最小,分别为1.33×10^(-3)、5.21×10^(-4)。 展开更多
关键词 时间序列预测 回声状态网络模型 高斯噪声 储备池层
在线阅读 下载PDF
基于Transformer的时间序列预测方法综述 被引量:1
6
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 Transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
基于在线监测时间序列数据的水质预测模型研究进展 被引量:1
7
作者 秦艳 徐庆 +3 位作者 陈晓倩 刘振鸿 唐亦舜 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第3期116-122,共7页
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进... 当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。 展开更多
关键词 水质预测模型 在线监测 时间序列分析 自回归模型 人工神经网络
在线阅读 下载PDF
基于XGB-KF模型的农业温室温度预测 被引量:1
8
作者 黄威 贾若然 +1 位作者 钟坤华 刘曙光 《重庆大学学报》 北大核心 2025年第4期108-114,共7页
针对农业温室大棚温度测量受噪声影响不易直接预测的问题,提出一种将XGBoost(extreme gradient boosting)和Kalman filter相结合的集成预测模型XGB-KF(extreme gradient boosting with Kalman filter)。该模型首先基于XGBoost对温室内... 针对农业温室大棚温度测量受噪声影响不易直接预测的问题,提出一种将XGBoost(extreme gradient boosting)和Kalman filter相结合的集成预测模型XGB-KF(extreme gradient boosting with Kalman filter)。该模型首先基于XGBoost对温室内部当前时刻的温度值进行初步估计,使用卡尔曼滤波(Kalman filter)对得到的估计结果进行动态修正,得到最终的预测结果。基于涿州地区农业温室大棚的传感器数据进行了数值实验,以均方根误差(root mean square error,RMSE)作为主要指标对模型进行性能评估。与XGBoost、Bi-LSTM和Bi-LSTM-KF方法相比较,XGB-KF的RMSE分别降低5.22%、10.85%、7.45%。 展开更多
关键词 集成模型 机器学习 时间序列 温室温度
在线阅读 下载PDF
使用通道融合和序列平稳化策略的长期时间序列预测方法
9
作者 赵龙港 车超 赵天明 《小型微型计算机系统》 北大核心 2025年第5期1120-1126,共7页
长期时间序列预测在现实场景中扮演重要角色.先前的研究表明,基于Transformers的模型采用的逐点自注意力会增加计算复杂度,而基于线性结构和通道独立的模型可以获得更高的效率和准确性.然而,长期时间模式在不同通道之间也存在难以抽取... 长期时间序列预测在现实场景中扮演重要角色.先前的研究表明,基于Transformers的模型采用的逐点自注意力会增加计算复杂度,而基于线性结构和通道独立的模型可以获得更高的效率和准确性.然而,长期时间模式在不同通道之间也存在难以抽取的依赖关系.为了解决计算复杂度高和复杂时间模式难以捕捉的问题,该文提出了通道融合和序列平稳化模型,模型结合了通道独立与通道依赖的训练策略,基于线性结构发掘序列单个通道的相关性,并使用由傅里叶运算启发的卷积结构来自适应地融合不同的通道.同时,通过堆叠序列通道融合-分解模块,进一步提高模型的预测性能.此外,该文在子序列级别引入了平稳化与反平稳化模块,从而提高了模型的泛化能力.在长期预测方面,所提模型在3个通用时序数据集上的准确度超越了其他基准模型. 展开更多
关键词 时间序列预测 线性模型 周期分解 通道融合卷积 平稳化
在线阅读 下载PDF
基于时间序列预测的冷数据压缩方法
10
作者 张永潘 张正 +3 位作者 徐良红 钱超 丁诚 潘甦 《南京邮电大学学报(自然科学版)》 北大核心 2025年第4期100-106,共7页
提出了一种基于时间序列预测的时序数据库的冷数据压缩方法。该方法采用一种双自回归预测模型对时序数据进行预测,只储存预测值和真实值的残差以及预测模型系数。在解码端通过预测模型系数构建预测模型,输出预测值,然后加上残差恢复原... 提出了一种基于时间序列预测的时序数据库的冷数据压缩方法。该方法采用一种双自回归预测模型对时序数据进行预测,只储存预测值和真实值的残差以及预测模型系数。在解码端通过预测模型系数构建预测模型,输出预测值,然后加上残差恢复原始值。由于残差远远小于原始值,因此可以用很少的比特量化,同时预测模型系数在存储一次后在长时间内不必重复存储,因此达到压缩时序数据的目的。在8个不同大小类型的真实数据集上的实验结果证明了该压缩方法良好的压缩表现,适合处理数据量大但对算法时延没有要求的历史数据。 展开更多
关键词 时间序列预测 模型系数 数据压缩
在线阅读 下载PDF
融合机理模型与深度学习的加热炉钢坯温度预测
11
作者 冯旭刚 杨克 +5 位作者 安硕 王正兵 唐得志 王伟 柳传武 潘磊 《中南大学学报(自然科学版)》 北大核心 2025年第7期2719-2730,共12页
数据驱动模型在加热炉钢坯温度预测中存在机理模糊性与参数敏感性的局限,导致预测精度降低。为此,本文提出一种结合机理模型与深度学习的钢坯温度模型预测算法。首先,基于对流与辐射传热的一维非稳态传热模型(convection-radiation heat... 数据驱动模型在加热炉钢坯温度预测中存在机理模糊性与参数敏感性的局限,导致预测精度降低。为此,本文提出一种结合机理模型与深度学习的钢坯温度模型预测算法。首先,基于对流与辐射传热的一维非稳态传热模型(convection-radiation heat transfer model,CRHT),初步计算钢坯出段温度,并将其与加热炉工况参数进行融合,实现机理知识的整合;其次,采用tent混沌映射和动态自适应权重改进差异创意搜索(differentiated creative search,DCS)算法,实现双向时间卷积网络(bidirectional temporal convolutional networks,BITCN)与双向长短期记忆网络(bidirectional long short-term memory,BILSTM)融合模型的超参数协同优化;最后,通过加热炉实际生产数据,系统地验证了该模型的准确性。研究结果表明:在加热炉均热段的钢坯温度预测中,与常规BITCN-BILSTM模型的预测结果相比,所提出的预测算法所得结果的平均绝对误差、均方根误差的相对误差分别降低了52.8%和28.9%,模型预测精度得到明显提升。 展开更多
关键词 钢坯温度预测 机理模型 双向时间卷积神经网络 双向长短期记忆 差异创意搜索
在线阅读 下载PDF
基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究 被引量:1
12
作者 丁莹莹 尹尚先 +4 位作者 连会青 卜昌森 刘伟 夏向学 周旺 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第3期110-117,共8页
为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预... 为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。 展开更多
关键词 涌水量预测 时间序列预测 混合模型 经验模态分解 麻雀搜索算法
在线阅读 下载PDF
基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型 被引量:2
13
作者 真嘉捷 赖丰文 +2 位作者 黄明 李爽 许凯 《岩土力学》 EI CAS CSCD 北大核心 2024年第12期3791-3801,共11页
基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影... 基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影响,结合Boruta算法,确定模型输入特征;利用小波变换滤波器、完备自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法消除时间序列数据噪声,构建了一种基于LightBGM-Informer的盾构隧道施工期管片上浮预测模型。通过南京和厦门地区某地铁盾构隧道监测数据,验证了所提模型的准确性和适用性。结果表明,所提模型预测精度较循环神经网络(recurrent neural network,RNN)、长短时记忆网络(long short-term memory,LSTM)、门控循环单元(gated recurrent unit,GRU)、Transformer等模型有所提升,且在地质条件不同的数据集上具有良好的泛化性;随着预测序列长度的增加,该模型的性能优势更突出,可准确预测盾构刀盘前方1~2环未施工管片的上浮值。基于沙普利加和解释(Shapley additive explanations,SHAP)方法的特征重要性分析指出,土舱压力及盾头、盾尾垂直位移对管片上浮影响显著。所提模型可为复杂环境下富水地层盾构隧道管片施工智能化控制提供理论指导。 展开更多
关键词 盾构隧道 管片上浮 时间序列预测问题 Informer模型 SHAP方法
在线阅读 下载PDF
基于时间序列神经分层插值模型的光伏功率超短期多步预测 被引量:4
14
作者 李楠 刘佳佳 +3 位作者 赖心怡 杨志远 王泽亮 文福拴 《智慧电力》 北大核心 2024年第4期69-77,共9页
针对光伏功率预测准确性受数据质量和外部变量影响的问题,提出一种结合外生变量分析、数据质量控制以及时间序列神经分层插值(N-HiTS)模型的光伏功率超短期多步预测方法。首先,提出用于筛选外生变量的综合相关性度量(ICM)指标,并采用K近... 针对光伏功率预测准确性受数据质量和外部变量影响的问题,提出一种结合外生变量分析、数据质量控制以及时间序列神经分层插值(N-HiTS)模型的光伏功率超短期多步预测方法。首先,提出用于筛选外生变量的综合相关性度量(ICM)指标,并采用K近邻(KNN)算法与线性插值策略处理数据缺失问题。然后,引入N-HiTS长时间序列预测模型,通过多尺度信号采样和分层插值提高模型对长时间序列数据的处理能力。最后,通过算例对所提方法与传统光伏功率预测方法进行对比分析,验证了所提方法的预测准确性。 展开更多
关键词 光伏功率预测 时间序列神经分层插值模型(N-HiTS) 综合相关性度量(ICM) K近邻(KNN) 线性插值
在线阅读 下载PDF
基于时间序列和多元模型的集约化猪舍温度预测 被引量:10
15
作者 曾志雄 罗毅智 +3 位作者 余乔东 蔡任 吕恩利 夏晶晶 《华南农业大学学报》 CAS CSCD 北大核心 2021年第3期111-118,共8页
【目的】从挖掘猪舍历史环境参数数据时序信息角度出发,提出基于时间序列模型和多元模型序列的猪舍温度预测模型。【方法】采取缺失部分环境因子统计预测,评估猪舍环境中相对湿度、二氧化碳浓度、氧气浓度等环境因子对温度预测的影响程... 【目的】从挖掘猪舍历史环境参数数据时序信息角度出发,提出基于时间序列模型和多元模型序列的猪舍温度预测模型。【方法】采取缺失部分环境因子统计预测,评估猪舍环境中相对湿度、二氧化碳浓度、氧气浓度等环境因子对温度预测的影响程度。针对猪舍温度时间序列进行数据预处理,滤除错误值和缺失值,采用时间序列模型构建基于门控循环单元网络(Gated recurrent unit,GRU)的猪舍温度预测模型,采用多元模型建立基于梯度提升决策树(Extreme gradient boosting,XGBoost)缺失值重要程度的猪舍温度预测模型。将该预测模型用于预测广东省某集约化猪场母猪分娩舍温度,并与循环神经网络(Recurrent neural network, RNN)模型、反向神经网络(Back propagation neural network, BPNN)模型进行对比试验。【结果】对比温度预测值与实测值发现,基于GRU模型对应的猪舍温度均方根误差和平均绝对误差分别为0.25和0.19℃,平均绝对百分比误差为0.65%;基于XGBoost多元模型的猪舍温度均方根误差和平均绝对误差分别为1.21和0.71℃,平均绝对百分比误差为2.50%。在时间序列的温度预测模型中,GRU模型表现出更优的预测效果;在多元模型的温度预测中,XGBoost模型的预测效果更优。【结论】本研究使用的GRU模型在时间维度上对母猪分娩舍温度的变化起到了预警作用,确定了各种环境参数对温度的影响程度,为养殖环境的精细调控提供了参考。 展开更多
关键词 分娩舍 温度预测 时间序列模型 多元特征模型 特征重要性
在线阅读 下载PDF
土壤温度时间序列预测的BP神经网络模型研究 被引量:8
16
作者 邹平 杨劲松 姚荣江 《中国生态农业学报》 CAS CSCD 2008年第4期835-838,共4页
针对滨海盐渍区表层土壤温度时序变化复杂、高度非线性的特点,以江苏省苏北典型滩涂区域为研究对象,综合运用BP神经网络和时间序列多维拓展的方法,对长期定位监测点表土层土壤温度时间序列数据进行了分析和预测,为土壤溶质运移研究与当... 针对滨海盐渍区表层土壤温度时序变化复杂、高度非线性的特点,以江苏省苏北典型滩涂区域为研究对象,综合运用BP神经网络和时间序列多维拓展的方法,对长期定位监测点表土层土壤温度时间序列数据进行了分析和预测,为土壤溶质运移研究与当地作物合理布局提供理论基础和参考依据。结果表明,输入层、隐含层和输出层神经元数目分别为7、7和1的3层BP神经网络模型用于土壤温度时间序列训练仿真时效果最优,其误差平方和达最小值18.017。选定的此结构BP神经网络模型简单、实用,有良好的推广泛化能力,经独立测试样本检验,预测值与实测值的相对误差均在20%以内,平均相对误差仅为2.94%,可满足土壤温度日常预报的需要。 展开更多
关键词 土壤温度预测 时间序列 BP神经网络 滨海盐碱区 农业气象观测
在线阅读 下载PDF
计及温度影响的短期负荷预测时间序列模型 被引量:6
17
作者 万志宏 陈亮 文福拴 《华北电力大学学报(自然科学版)》 CAS 北大核心 2011年第3期61-66,共6页
时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模... 时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模型残差累积式自回归—滑动平均模型并对回归模型进行修正。最后,用广东电力系统的实际负荷数据说明了所发展的短期负荷预测模型的实际预测效果。计算结果表明所提出的方法可以弥补现有时间序列模型的缺点,有效地提高负荷预测精度。 展开更多
关键词 短期负荷预测 回归模型 时间序列模型 累积式自回归—滑动平均模型
在线阅读 下载PDF
基于DEMETER卫星观测数据的电离层离子温度时间序列预测模型 被引量:2
18
作者 徐方舟 宋现锋 +1 位作者 马灵玲 唐伶俐 《遥感信息》 CSCD 2012年第2期25-30,共6页
提出了一种利用DEMETER卫星观测量构建电离层离子温度背景场及预测模型的时间序列分析方法。首先,通过分析卫星轨道重访周期与建模格网大小的关系,确定了时间序列采样轨道数据的空间区域大小为1.75°×1.75°、时间间隔约... 提出了一种利用DEMETER卫星观测量构建电离层离子温度背景场及预测模型的时间序列分析方法。首先,通过分析卫星轨道重访周期与建模格网大小的关系,确定了时间序列采样轨道数据的空间区域大小为1.75°×1.75°、时间间隔约为14天。然后,基于电离层离子温度明显的季节变化特征,采用自回归移动平均模型(ARIMA)构建时间序列预测模型来描述电离层离子温度及其周期性变化。最后,采用2006年~2009年的DE-METER卫星观测数据验证了该时间序列预测模型,结果表明ARIMA季节模型能较好地模拟电离层离子温度在时间上的变化趋势,建立较为可靠的电离层背景场。 展开更多
关键词 DEMETER卫星 电离层背景场 离子温度 ARIMA模型 时间序列分析
在线阅读 下载PDF
山区双车道公路借道超车轨迹预测模型
19
作者 覃文文 彭栋梁 +4 位作者 戢晓峰 徐迎豪 李冰 李武 曾浩 《交通运输系统工程与信息》 北大核心 2025年第3期96-106,共11页
为提高山区双车道公路的车辆轨迹预测精度,本文设计一种考虑借道超车影响的车辆轨迹预测模型。首先,基于无人机视频轨迹数据,根据航向角将借道超车过程划分为跟驰、借道、超车和返回这4种状态;其次,构建包含借道超车状态、车辆运动特征... 为提高山区双车道公路的车辆轨迹预测精度,本文设计一种考虑借道超车影响的车辆轨迹预测模型。首先,基于无人机视频轨迹数据,根据航向角将借道超车过程划分为跟驰、借道、超车和返回这4种状态;其次,构建包含借道超车状态、车辆运动特征、空间位置属性和交通状态的多元特征数据集,通过梯度提升决策树算法拟合借道超车状态与车辆运动特征、空间位置和交通状态之间的复杂关系,采用SHAP(SHapley Additive exPlanations)方法识别影响借道超车状态变化的关键因素;然后,将借道超车状态、影响借道超车状态的关键因素和历史轨迹数据集,以滑动时间窗口形式输入至Informer模型,预测山区双车道公路的借道超车轨迹;最后,与未考虑借道超车影响的传统超车轨迹预测模型进行对比,验证本文模型的有效性。结果表明:车头时距、主体车辆横向速度和横向偏移是影响借道超车状态变化的关键因素;所构建的模型在山区双车道借道超车场景下,具有良好的适用性和预测精度;与未考虑借道超车影响的轨迹预测模型相比,本文模型的均方误差和平均绝对误差均值分别降低53.05%和38.11%,决定系数均值提升23.58%。 展开更多
关键词 交通工程 超车轨迹预测 Informer时间序列模型 借道超车 山区双车道
在线阅读 下载PDF
基于GAT-Informer的采空区煤自燃温度预测模型
20
作者 贾澎涛 张杰 郭风景 《工矿自动化》 CSCD 北大核心 2024年第11期92-98,108,共8页
现有的煤自燃温度预测模型仅考虑监测数据前后的时间关联性,未考虑监测点之间的空间关系,并存在多步长煤自燃温度预测精度低的问题。针对上述问题,提出了一种基于图注意力网络(GAT)和Informer模型(GAT-Informer)的采空区煤自燃温度预测... 现有的煤自燃温度预测模型仅考虑监测数据前后的时间关联性,未考虑监测点之间的空间关系,并存在多步长煤自燃温度预测精度低的问题。针对上述问题,提出了一种基于图注意力网络(GAT)和Informer模型(GAT-Informer)的采空区煤自燃温度预测模型。首先,采用随机森林回归法和Savitzky-Golay滤波器对采空区沿空侧煤自燃监测数据中的异常值、缺失值和噪声进行处理,并使用Z-score方法对数据进行标准化。其次,采用GAT提取多个监测点煤自燃监测数据间的空间特征。然后,使用Informer模型的编码器对包含空间特征的数据进行编码,利用多头概率稀疏自注意力机制捕捉数据之间的长期依赖关系和时间特征;解码器通过交叉注意力机制与编码器交互,结合编码器提取的全局特征与目标序列的上下文依赖关系,生成特征矩阵并输入全连接层,得到煤自燃温度预测值。最后,对Informer模型输出的煤自燃温度预测值进行反标准化处理,恢复到原始数据尺度,得到最终的预测结果。实验结果表明,相较于循环神经网络(RNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)和Informer模型,GAT-Informer模型在6个监测点上预测24步长煤自燃温度时,均方误差(MSE)分别平均降低了15.70%,22.15%,25.45%,36.49%,平均绝对误差(MAE)分别平均降低了16.01%,14.60%,20.30%,26.27%,表明GAT-Informer模型能有效提高煤自燃温度多步长预测精度。 展开更多
关键词 煤自燃 煤自燃温度预测 多步长时间序列预测 图注意力网络 INFORMER 数据时空特征
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部