期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
时间分数阶扩散波方程的无单元Galerkin法分析 被引量:3
1
作者 吴迪 李小林 《应用数学和力学》 CSCD 北大核心 2022年第2期215-223,共9页
利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析.首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet... 利用无单元Galerkin法,对Caputo意义下的时间分数阶扩散波方程进行了数值求解和相应误差理论分析.首先用L1逼近公式离散该方程中的时间变量,将时间分数阶扩散波方程转化成与时间无关的整数阶微分方程;然后采用罚函数方法处理Dirichlet边界条件,并利用无单元Galerkin法离散整数阶微分方程;最后推导该方程无单元Galerkin法的误差估计公式.数值算例证明了该方法的精度和效果. 展开更多
关键词 时间分数阶扩散波方程 无单元Galerkin法 L1逼近公式 误差估计
在线阅读 下载PDF
基于再生核和有限差分法求解变系数时间分数阶对流扩散方程
2
作者 吕学琴 何松岩 王世宇 《数学物理学报(A辑)》 北大核心 2025年第1期153-164,共12页
针对变系数的时间分数阶对流-扩散方程,首先,使用有限差分法,得到了该方程的半离散格式.之后再利用再生核方法,得到了方程的精确解u(x,t_(n)),将精确解u(x,t_(n))取m项截断,可得到近似解u_(m)(x,t_(n)).通过证明,得到该方法是稳定的.最... 针对变系数的时间分数阶对流-扩散方程,首先,使用有限差分法,得到了该方程的半离散格式.之后再利用再生核方法,得到了方程的精确解u(x,t_(n)),将精确解u(x,t_(n))取m项截断,可得到近似解u_(m)(x,t_(n)).通过证明,得到该方法是稳定的.最后,通过三个数值例子,并与其他文献中的方法在同等条件下进行了比较,证明该算法有效. 展开更多
关键词 CAPUTO分数导数 再生核方法 变系数时间分数对流扩散方程 有限差分方法
在线阅读 下载PDF
多项时间分数阶混合扩散-波动方程ADI有限差分法
3
作者 黎丽梅 易云玲 +1 位作者 郭欣雨 郭广源 《湖南理工学院学报(自然科学版)》 CAS 2024年第3期1-7,共7页
用交替方向隐式(ADI)有限差分法研究多项时间分数阶混合扩散-波动方程的数值解,在时间方向上,采用降阶的方法,将扩散项和波动项转化为RL积分项和扩散项,分别使用L2-1_(σ)和L1公式逼近;空间方向结合二阶中心差商离散,并通过数值算例验... 用交替方向隐式(ADI)有限差分法研究多项时间分数阶混合扩散-波动方程的数值解,在时间方向上,采用降阶的方法,将扩散项和波动项转化为RL积分项和扩散项,分别使用L2-1_(σ)和L1公式逼近;空间方向结合二阶中心差商离散,并通过数值算例验证差分格式的有效性. 展开更多
关键词 多项时间分数混合扩散-方程 交替方向隐式法 有限差分法
在线阅读 下载PDF
分数阶时间导数方程和反常亚扩散过程——纪念茆诗松教授
4
作者 陈振庆 《应用概率统计》 CSCD 北大核心 2024年第2期323-342,共20页
本文介绍并且改进和推广了时间导数为分数阶的方程,以及与反常亚扩散过程相关联的最近的一些结果.
关键词 分数时间导数 时间分数方程 隶属子 逆隶属子 强解和弱解
在线阅读 下载PDF
基于时间分数阶扩散方程的药物控释初始浓度优化
5
作者 张新明 黎潇 黄何 《工程数学学报》 CSCD 北大核心 2024年第5期867-881,共15页
药物控释系统是指通过调控内部某些设计参数,以达到特定药物释放目标的一种可控释体系。针对基于时间分数阶扩散方程的药物控释体系初始浓度优化问题,采用B样条小波方法求解正问题,采用结合了小生境策略和布谷鸟搜索算法的小生境布谷鸟... 药物控释系统是指通过调控内部某些设计参数,以达到特定药物释放目标的一种可控释体系。针对基于时间分数阶扩散方程的药物控释体系初始浓度优化问题,采用B样条小波方法求解正问题,采用结合了小生境策略和布谷鸟搜索算法的小生境布谷鸟算法优化不同分数阶下的药物初始浓度,从而近似达到三种预期药物释放目标。对于正问题求解,主要结合Caputo导数和三次B样条尺度函数,建立了一种B样条小波方法的迭代求解格式;对于初始浓度优化问题,引入了反问题研究思路,将药物控释体系的优化设计问题归结为基于分数阶扩散方程的参数辨识问题。为了实现参数反演控制,引入了小生境布谷鸟智能优化算法,反演计算控释体系中的初始浓度,有效地解决了布谷鸟算法易陷入局部极值的问题。针对恒速释放,线性降低释放和非线性释放三种释放目标,给出了最优控制参数设计,数值算例验证了所提方法的有效性。 展开更多
关键词 时间分数扩散方程 药物控释体系初始浓度优化 B样条小方法 小生境布谷鸟算法
在线阅读 下载PDF
一类半线性时间分数阶扩散-波动方程解的整体存在唯一性
6
作者 何鑫海 刘梅 杨晗 《数学物理学报(A辑)》 CSCD 北大核心 2022年第6期1705-1718,共14页
该文研究一类半线性时间分数阶扩散-波动方程的柯西问题,基于线性问题的L^(r)-L^(q)估计,通过整体迭代法,在小初值的情况下研究非线性项指数对于解的整体存在性影响,在指数满足一定条件的情况下证明了整体解的存在唯一性.
关键词 时间分数扩散-方程 柯西问题 小初值 整体解
在线阅读 下载PDF
时间分数阶扩散方程的二阶差分/拟小波法
7
作者 郭冲 赵凤群 《陕西科技大学学报》 CAS 2019年第3期179-184,共6页
为了研究时间分数阶扩散方程的高精度的数值方法,得到高阶的数值格式,采用Caputo分数阶导数的差分公式——L2-1_σ公式离散时间分数阶导数,得到了时间分数阶扩散方程的半离散格式,并证明了半离散格式是无条件稳定的,且收敛阶为O(τ~2).... 为了研究时间分数阶扩散方程的高精度的数值方法,得到高阶的数值格式,采用Caputo分数阶导数的差分公式——L2-1_σ公式离散时间分数阶导数,得到了时间分数阶扩散方程的半离散格式,并证明了半离散格式是无条件稳定的,且收敛阶为O(τ~2).空间导数采用拟小波方法离散,构造出了时间分数阶扩散方程的一种新的全离散数值格式.最后,通过数值算例验证了理论分析的正确性和数值解的有效性,而且结果表明这种算法收敛快、误差小,是一种高效的数值算法. 展开更多
关键词 时间分数扩散方程 L2-1σ公式 拟小 稳定性
在线阅读 下载PDF
多项时间分数阶扩散方程类Wilson非协调元的超收敛分析 被引量:4
8
作者 王芬玲 张景丽 +2 位作者 樊明智 赵艳敏 史艳华 《应用数学》 CSCD 北大核心 2018年第1期79-88,共10页
基于L1离散格式,针对具有Caputo导数的二维多项时间分数阶扩散方程给出了类Wilson非协调有限元方法.首先证明其逼近格式的无条件稳定性.其次利用该单元的特殊性质和分数阶导数巧妙的处理技巧导出了超逼近结果,进一步地,借助插值后处理... 基于L1离散格式,针对具有Caputo导数的二维多项时间分数阶扩散方程给出了类Wilson非协调有限元方法.首先证明其逼近格式的无条件稳定性.其次利用该单元的特殊性质和分数阶导数巧妙的处理技巧导出了超逼近结果,进一步地,借助插值后处理技术导出了超收敛估计. 展开更多
关键词 多项时间分数扩散方程 类WILSON元 全离散格式 超逼近和超收敛
在线阅读 下载PDF
时间分数阶扩散方程线性三角形元的高精度分析 被引量:2
9
作者 史艳华 张亚东 +2 位作者 王芬玲 赵艳敏 王萍莉 《数学物理学报(A辑)》 CSCD 北大核心 2019年第4期839-850,共12页
该文基于线性三角形元和改进的L1格式,对具有α阶Caputo导数的时间分数阶扩散方程建立了一个全离散逼近格式.首先,证明了该格式的无条件稳定性.其次,利用该单元及Ritz投影算子的性质,导出了关于投影算子具有O(h^2+τ^2-α)阶的超逼近性... 该文基于线性三角形元和改进的L1格式,对具有α阶Caputo导数的时间分数阶扩散方程建立了一个全离散逼近格式.首先,证明了该格式的无条件稳定性.其次,利用该单元及Ritz投影算子的性质,导出了关于投影算子具有O(h^2+τ^2-α)阶的超逼近性质.再结合插值算子和投影算子的关系,进一步导出了关于插值算子具有O(h^2+τ^2-α)阶的超逼近性质.然后,借助插值后处理技术得到了整体超收敛估计.最后,利用数值算例验证了理论分析的正确性. 展开更多
关键词 时间分数扩散方程 线性三角形元 全离散格式 无条件稳定 超逼近和超收敛
在线阅读 下载PDF
时间分数阶扩散方程的一种交替分带并行差分方法 被引量:2
10
作者 杨晓忠 吴立飞 《工程数学学报》 CSCD 北大核心 2019年第5期535-550,共16页
分数阶反常扩散方程具有深刻的物理背景和丰富的理论内涵,其数值解法的研究具有重要的科学意义和工程应用价值.针对二维时间分数阶反常扩散方程,本文研究一种交替分带 Crank-Nicolson差分的并行计算方法(ABdC-N方法).该格式是在交替分... 分数阶反常扩散方程具有深刻的物理背景和丰富的理论内涵,其数值解法的研究具有重要的科学意义和工程应用价值.针对二维时间分数阶反常扩散方程,本文研究一种交替分带 Crank-Nicolson差分的并行计算方法(ABdC-N方法).该格式是在交替分带技术的基础上,结合经典显式、隐式和 Crank-Nicolson差分格式构造而成.理论分析和数值试验表明,ABdC-N方法是无条件稳定和收敛的,具有良好的计算精度和并行计算性质,并且计算效率远优于经典的串行差分方法,证实本文 ABdC-N差分方法求解二维时间分数阶反常扩散方程是有效的. 展开更多
关键词 二维时间分数扩散方程 交替分带 CRANK-NICOLSON 差分格式 稳定性 并行计算 数值实验
在线阅读 下载PDF
一类变时间分数阶含源项非定常奇异摄动对流扩散方程的数值分析 被引量:3
11
作者 马亮亮 刘冬兵 《沈阳大学学报(自然科学版)》 CAS 2013年第5期424-427,共4页
考虑了变时间分数阶含源项非定常奇异摄动对流扩散方程的数值逼近问题.首先采用分段线性插值法,结合对一阶时间导数的一个二阶近似离散Coimbra变时间分数阶导数,然后用中心差分离散一阶空间分数阶导数和二阶空间分数阶导数,最后用数值... 考虑了变时间分数阶含源项非定常奇异摄动对流扩散方程的数值逼近问题.首先采用分段线性插值法,结合对一阶时间导数的一个二阶近似离散Coimbra变时间分数阶导数,然后用中心差分离散一阶空间分数阶导数和二阶空间分数阶导数,最后用数值例子验证了提出的数值方法,说明了数值方法的有效性. 展开更多
关键词 对流扩散方程 Coimbra变分数导数 数值逼近 中心差分 空间分数导数
在线阅读 下载PDF
一种时间分数阶扩散方程初边值问题的隐式有限差分格式 被引量:4
12
作者 陈春华 卢旋珠 《东华理工学院学报》 CAS 2006年第3期289-293,共5页
通过Caputo型与G runwald型的分数阶导数的转化关系以及利用G runwald型的标准数值近似公式对Caputo型分数阶导数进行离散,可构建时间分数阶扩散方程初边值问题的隐式有限差分格式。此差分格式是无条件稳定和无条件收敛的。
关键词 时间分数扩散方程 差分格式 稳定性 收敛性
在线阅读 下载PDF
时间-空间分数阶扩散方程 被引量:1
13
作者 朱波 韩宝燕 《江南大学学报(自然科学版)》 CAS 2010年第6期750-752,共3页
讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函... 讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函数,并用Green函数得到有源时间-空间分数阶扩散方程Cauchy问题的解。 展开更多
关键词 时间-空间分数扩散方程 FOURIER变换 LAPLACE变换 GREEN函数 Mittag-Leffler函数
在线阅读 下载PDF
对时间的分数阶扩散方程在图像恢复中的应用 被引量:2
14
作者 张文娟 王艳红 《陕西理工学院学报(自然科学版)》 2009年第2期45-48,共4页
提出了一种包含对时间的分数阶导数的非线性扩散方程,它是对Perona-Malik的非线性扩散方程和Cuesta提出的方程的推广,介于非线性抛物方程和非线性双曲方程之间,从而能有效地控制扩散过程,使得在去除图像噪声的同时能够尽可能地保留图像... 提出了一种包含对时间的分数阶导数的非线性扩散方程,它是对Perona-Malik的非线性扩散方程和Cuesta提出的方程的推广,介于非线性抛物方程和非线性双曲方程之间,从而能有效地控制扩散过程,使得在去除图像噪声的同时能够尽可能地保留图像的边缘等细节信息。数值试验结果显示,该方程比Perona-Malik的非线性扩散方程有更好的去噪效果。 展开更多
关键词 分数导数(积分) 非线性分数扩散方程 图象恢复 去噪
在线阅读 下载PDF
二维时间分数阶扩散方程的Hermite型矩形元的超收敛分析
15
作者 王萍莉 牛裕琪 +2 位作者 赵艳敏 王芬玲 史艳华 《应用数学》 CSCD 北大核心 2019年第3期651-658,共8页
基于经典的L1逼近,针对二维时间分数阶扩散方程给出Hermite型矩形元的全离散格式.首先,证明其逼近格式的无条件稳定性.其次,基于Hermite型矩形元的积分恒等式结果,建立插值与Ritz投影之间在H 1模意义下的超收敛估计.进而,通过利用插值... 基于经典的L1逼近,针对二维时间分数阶扩散方程给出Hermite型矩形元的全离散格式.首先,证明其逼近格式的无条件稳定性.其次,基于Hermite型矩形元的积分恒等式结果,建立插值与Ritz投影之间在H 1模意义下的超收敛估计.进而,通过利用插值与投影的关系及巧妙地处理分数阶导数,得到单独利用插值或Ritz投影所无法得到的超逼近及超收敛结果.最后,借助于插值后处理技术导出了整体超收敛结果. 展开更多
关键词 二维时间分数扩散方程 Hermite型矩形元 L1逼近 超逼近及超收敛
在线阅读 下载PDF
带变系数的多项时间分数阶扩散方程各向异性三角形元的超收敛分析
16
作者 王芬玲 史艳华 +1 位作者 史争光 赵艳敏 《应用数学》 CSCD 北大核心 2022年第4期793-806,共14页
本文在空间方向上利用有限元方法,时间方向上利用经典的L1逼近格式,对一类带变系数的二维多项时间分数阶扩散方程建立了各向异性网格下的全离散格式.给出了全离散格式在L^(2)和H^(1)范数下稳定性的严格证明.利用线性三角形元的投影算子... 本文在空间方向上利用有限元方法,时间方向上利用经典的L1逼近格式,对一类带变系数的二维多项时间分数阶扩散方程建立了各向异性网格下的全离散格式.给出了全离散格式在L^(2)和H^(1)范数下稳定性的严格证明.利用线性三角形元的投影算子和插值算子之间的高精度分析结果,得到了在H1范数下具有O(h^(2)+τ^(2−α))的超逼近结果,这里h和τ分别是空间和时间步长.然后借助插值后处理技巧导出了超收敛分析,而该结果如果单独使用插值算子或者投影算子是无法得到的.最后,给出了一些数值结果证明了理论方法的有效性. 展开更多
关键词 多项时间分数扩散方程 线性三角形元 各向异性网格 稳定性 超收敛
在线阅读 下载PDF
时空分数阶扩散波动方程的初值识别问题
17
作者 杨帆 曹英 李晓晓 《数学物理学报(A辑)》 CSCD 北大核心 2023年第2期377-398,共22页
研究具有时空分数阶导数的扩散波动方程的初值识别反问题.分析该反问题的不适定性,给出条件稳定性结果.利用Tikhonov正则化方法恢复解的稳定性,并分别给出在先验和后验正则化参数选取规则下,正则解和精确解之间的误差估计.通过数值算例... 研究具有时空分数阶导数的扩散波动方程的初值识别反问题.分析该反问题的不适定性,给出条件稳定性结果.利用Tikhonov正则化方法恢复解的稳定性,并分别给出在先验和后验正则化参数选取规则下,正则解和精确解之间的误差估计.通过数值算例说明Tikhonov正则化方法求解此类反问题非常有效. 展开更多
关键词 时空分数扩散方程 不适定问题 初值识别 TIKHONOV正则化方法 误差估计
在线阅读 下载PDF
半线性Riemann-Liouville分数阶发展方程反馈时间最优控制
18
作者 宾茂君 施翠云 《数学物理学报(A辑)》 CSCD 北大核心 2024年第3期687-698,共12页
该文研究Banach空间中一类半线性Riemann-Liouville.首先,利用不动点定理求解方程的温和解存在唯一性.其次,在半群是紧的前提下借助Cesari性质和Fillipove定理证明容许轨迹集的非空性.在此基础上证明时间反馈最优控制问题的存在性结果.... 该文研究Banach空间中一类半线性Riemann-Liouville.首先,利用不动点定理求解方程的温和解存在唯一性.其次,在半群是紧的前提下借助Cesari性质和Fillipove定理证明容许轨迹集的非空性.在此基础上证明时间反馈最优控制问题的存在性结果.最后,给出实例来说明文章的主要结果. 展开更多
关键词 半线性分数微分方程 容许轨迹 容许控制 反馈控制 时间最优控制
在线阅读 下载PDF
变时间分数阶扩散方程的非一致时间网格有限差分方法
19
作者 姜英军 蒙玲玲 《数学理论与应用》 2014年第4期6-11,共6页
本文在非一致时间网格上,使用有限差分方法求解变时间分数阶扩散方程?α(x,t)u(x,t)/tα(x,t)-2u(x,t)/x2=f(x,t),0<α(x,t)<q≤1,证明了该方法在最大范数下的稳定性与收敛性,收敛阶为C(Δt2-q+h2).数值实例验证了理论分析... 本文在非一致时间网格上,使用有限差分方法求解变时间分数阶扩散方程?α(x,t)u(x,t)/tα(x,t)-2u(x,t)/x2=f(x,t),0<α(x,t)<q≤1,证明了该方法在最大范数下的稳定性与收敛性,收敛阶为C(Δt2-q+h2).数值实例验证了理论分析的结果. 展开更多
关键词 时间分数扩散方程 分数 非一致网格
在线阅读 下载PDF
时间分数阶慢扩散方程的一类有效差分方法 被引量:1
20
作者 赵雅迪 吴立飞 +1 位作者 杨晓忠 孙淑珍 《数学物理学报(A辑)》 CSCD 北大核心 2018年第6期1122-1134,共13页
对时间分数阶慢扩散方程提出一类数值差分方法:显-隐(Explicit-Implicit, E-I)和隐-显(Implicit-Explicit, I-E)差分方法.它是将古典显式格式与古典隐式格式相结合构造出的一类有效差分格式.理论证明了格式解的存在唯一性,用傅里叶方法... 对时间分数阶慢扩散方程提出一类数值差分方法:显-隐(Explicit-Implicit, E-I)和隐-显(Implicit-Explicit, I-E)差分方法.它是将古典显式格式与古典隐式格式相结合构造出的一类有效差分格式.理论证明了格式解的存在唯一性,用傅里叶方法证明了格式的稳定性和收敛性.数值试验验证了理论分析,表明E-I格式和I-E格式在具有良好的精度且无条件稳定的情况下,计算速度比隐式格式提高了75%.从而用此格式解决分数阶慢扩散方程是可行的. 展开更多
关键词 时间分数扩散方程 显-隐(隐-显)差分格式 稳定性 收敛性 数值试验
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部