期刊文献+

时间-空间分数阶扩散方程 被引量:1

Fractional Diffusion Equation with Time-Space Fractional Derivatives
在线阅读 下载PDF
导出
摘要 讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函数,并用Green函数得到有源时间-空间分数阶扩散方程Cauchy问题的解。 The paper addresses Cauchy problem for the time-space fractional diffusion equation,which is derived from standard diffusion equation by replacing the first-order time derivative and second-order space derivative by fractional Caputo operator c0Dvt and fractional Riesz operator ▽μx,and get it's Green's function by means of integral transform(Fourier transform and Laplace Transform)and inverse transform.Using the Green's function,we draw the solution of the time-space fractional diffusion equation with source.
作者 朱波 韩宝燕
出处 《江南大学学报(自然科学版)》 CAS 2010年第6期750-752,共3页 Joural of Jiangnan University (Natural Science Edition) 
关键词 时间-空间分数阶扩散方程 FOURIER变换 LAPLACE变换 GREEN函数 Mittag-Leffler函数 time-space fractional diffusion equation Fourier transform Laplace transform Green's function Mittag-Leffler function
作者简介 朱波(1974-),男,山东临沂人,副教授,理学硕士。主要从事分数阶微积分的研究。Email:zhubo207@163.com
  • 相关文献

参考文献9

  • 1Gorenflo R,Luchko Y,Maninardi F.Wright functions as scale-invariant solutions of the diffusion-wave equation[J].J Comput Appl Math,2000,118(1):175-191.
  • 2Wyss W.Fractional diffusion equation[J].J Math Phys,1986,27(11):2782-2785.
  • 3Schneider W R,Wyss W.Fractional diffusion and wave equations[J].J Math Phys,1989,30(1):134-144.
  • 4段俊生,徐明瑜.有限区间上的分数阶扩散-波方程定解问题与Laplace变换[J].高校应用数学学报(A辑),2004,19(2):165-171. 被引量:9
  • 5West B J,Bologna M,Grigolini P.Physics of fractal operators[M].New York:Springer-verlag,2003:68-79.
  • 6Naber M.Time fractional Schrodinger equation[J].J Math Phys,2004,45(8):3339-3352.
  • 7Erdelyi A,Magnus W,Oberhettinger F,et al.Higher transcendental functions[M].New York:McGraw-Hill,1954.
  • 8Gorenflo R,Mainardi F.Fractional calculus:integral and differential equations of fractional order[M]// Carpinteri A,Mainardi F.Fractals and Fractional Calculus in Continuum Mechanics.New York:Springer Verlag,1997:223-276.
  • 9Podlubny I.Fractional differential equations[M].San Diego:Academic,1999:1-23.

二级参考文献12

  • 1Giona M,Roman H E. Fractional diffusion equation for transport phenomena in random media[J].Phys, A,1992,185:87-97.
  • 2Wegner J L,Norwood F R. Nonlinear Waves in Solids[M]. New York:The American Society of Mechanical Engineers, 1995,93-97.
  • 3Wyss W. Fractional diffusion equation[J]. J. Math. Phys. ,1986,27(11):2782-2785.
  • 4Schneider W R,Wyss W. Fractional diffusion and wave equations[J].J. Math. Phys.,1989,30(1):134-144.
  • 5Mathai A M,Saxena R K. The H-function with Applications in Statistics and Other Disciplines [M]. New Delhi:Wiley Eastern Limited,1978.
  • 6Glockle W G,Nonnenmacher T F. Fox function representation of Non-Debye relaxation processes [J]. J Statist. Phys.,1993,71(3):741-757.
  • 7Mainardi F. The fundamental solutions for the fractional diffusion-wave equation[J]. Appl. Math.Lett.,1996,9(6):23-28.
  • 8Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J]. Chaos,Solitons and Fractals, 1996,7 (9):1461-1477.
  • 9Gorenflo R,Luchko Y,Mainardi F. Wright functions as scale-invariant solutions of the diffusionwave equation[J]. J. Comput. Appl. Math.,2000,118(1):175-191.
  • 10Nigmatullin R R. The realization of the generalized transfer equation in a medium with fractal geometry[J]. Phys. Stat. Sol. B, 1986,133: 425-430.

共引文献8

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部