摘要
讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函数,并用Green函数得到有源时间-空间分数阶扩散方程Cauchy问题的解。
The paper addresses Cauchy problem for the time-space fractional diffusion equation,which is derived from standard diffusion equation by replacing the first-order time derivative and second-order space derivative by fractional Caputo operator c0Dvt and fractional Riesz operator ▽μx,and get it's Green's function by means of integral transform(Fourier transform and Laplace Transform)and inverse transform.Using the Green's function,we draw the solution of the time-space fractional diffusion equation with source.
出处
《江南大学学报(自然科学版)》
CAS
2010年第6期750-752,共3页
Joural of Jiangnan University (Natural Science Edition)
作者简介
朱波(1974-),男,山东临沂人,副教授,理学硕士。主要从事分数阶微积分的研究。Email:zhubo207@163.com