期刊文献+

二维时间分数阶扩散方程的Hermite型矩形元的超收敛分析

Superconvergence Analysis of Hermite-Type Rectangular Element Method for Two-Dimensional Time Fractional Diffusion Equations
在线阅读 下载PDF
导出
摘要 基于经典的L1逼近,针对二维时间分数阶扩散方程给出Hermite型矩形元的全离散格式.首先,证明其逼近格式的无条件稳定性.其次,基于Hermite型矩形元的积分恒等式结果,建立插值与Ritz投影之间在H 1模意义下的超收敛估计.进而,通过利用插值与投影的关系及巧妙地处理分数阶导数,得到单独利用插值或Ritz投影所无法得到的超逼近及超收敛结果.最后,借助于插值后处理技术导出了整体超收敛结果. Based on the classical L1 approximation scheme, a Hermite-type rectangular element method is proposed for two-dimensional time fractional diffusion equations under the fully-discrete scheme. Firstly, unconditional stability analysis of the approcimate scheme is provided. Secondly, by use of the integral indentity result of Hermite-type rectangular element, superconvergence estimate in H1-norm is established between the interpolation and Ritz projection. Moreover, combining with the relationship between the interpolation operator and Ritz projection, and by dealing with fractional derivatives skillfully, superclose and superconvergence results are obtained, which cann’t be deduced by interpolation or Ritz projection alone. Finally, the global superconvergence property is derived by the technique of the postprocessing operator.
作者 王萍莉 牛裕琪 赵艳敏 王芬玲 史艳华 WANG Pingli;NIU Yuqi;ZHAO Yanmin;WANG Fenling;SHI Yanhua(School of Mathematics and Statistics, Xuchang University, Xuchang 4610001, China)
出处 《应用数学》 CSCD 北大核心 2019年第3期651-658,共8页 Mathematica Applicata
基金 河南省教育厅项目(17A110011) 河南省高等学校重点科研项目(19B110013) 许昌市基础与前沿研究项目(1504001,19)
关键词 二维时间分数阶扩散方程 Hermite型矩形元 L1逼近 超逼近及超收敛 Two-dimensional time fractional diffusion equation Hermite-type rectangular element L1 approximation Superclose and superconvergence
作者简介 王萍莉,女,汉族,河南人,讲师,研究方向:有限元方法及应用;通讯作者:牛裕琪.
  • 相关文献

参考文献9

二级参考文献172

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部