期刊文献+
共找到422篇文章
< 1 2 22 >
每页显示 20 50 100
基于增量稀疏核极限学习机的柴油机故障在线诊断 被引量:7
1
作者 刘敏 张英堂 +1 位作者 李志宁 范红波 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第2期217-224,共8页
为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的... 为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的原则实现样本前向稀疏与后向删减,在最佳阶数内对字典进行在线扩充与修剪,从而建立阶数有限且结构稀疏的诊断模型.针对模型核权重矩阵更新问题,提出了增样学习与改进减样学习算法对核权重矩阵进行在线递推求解,降低了计算复杂度,提高了模型在线更新速度.UCI标准数据与柴油机故障数据分类实验结果表明,与几类现有在线诊断算法相比,ISKELM在保证较高分类精度的同时,极大地提高了在线建模速度,更加快速准确地实现了柴油机故障在线诊断. 展开更多
关键词 增量稀疏核极限学习机 样本稀疏 瞬时信息测量 稀疏函数字典 减样学习 在线诊断
在线阅读 下载PDF
基于增量稀疏核极限学习机的发动机状态在线预测 被引量:3
2
作者 刘敏 张英堂 +1 位作者 范红波 李志宁 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第1期34-40,共7页
针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实... 针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实现在线样本前向稀疏与后向删减,提高了样本稀疏化效率.利用有效样本对测量矩阵在最佳阶数内进行在线扩充与修剪,限制了预测模型膨胀.利用改进的增量建模方法对模型的核权重矩阵进行递推更新,从而建立规模有限且结构稀疏的在线预测模型,提高了在线建模速度.仿真数据和发动机状态参数在线预测实验结果表明,与现有在线预测方法相比,ISKELM具有更高的样本稀疏化和在线建模效率.对发动机排气温度进行120步预测时,预测速度分别提高了80.50%和31.72%,预测精度分别提高了48.56%和15.81%. 展开更多
关键词 极限学习 稀疏测量矩阵 样本信息度量 增量建模 在线预测
在线阅读 下载PDF
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断
3
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合极限学习 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识 被引量:1
4
作者 高展鹏 易文俊 《电子测量与仪器学报》 北大核心 2025年第2期72-82,共11页
弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组... 弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组合模型来辨识弹丸的气动参数,为充分挖掘SSA算法性能,提高辨识精确度,将对SSA算法的初始化策略、收敛因子和加入者的位置更新策略进行改进,采用CEC2022测试函数对改进后的麻雀搜索算法(ISSA)的改进措施的有效性进行验证,并采用ISSA优化KELM的核参数和正则化系数,提出ISSA-KELM辨识模型。研究结果表明,直接采用极限学习机(ELM)算法的辨识精确度最低,无法描述非线性区域弹丸的气动参数特征,通过在ELM算法中引入核函数提出KELM方法可以将辨识精确度提高1~4个量级,KELM和SSA-KELM等模型在非线性区域的辨识结果与真实值还有一定的差距,而采用ISSA-KELM模型的辨识结果最为精确,相比较基本的ELM算法辨识结果提高约4~5个量级,可以准确获取弹丸的气动参数,本研究为精确飞行轨迹预测和导弹性能优化提供了可靠的技术支持。 展开更多
关键词 弹丸 麻雀搜索算法 极限学习 气动参数辨识 非线性
在线阅读 下载PDF
基于改进北方苍鹰算法与混合核极限学习机的齿轮箱故障诊断 被引量:1
5
作者 杜董生 王梦姣 +1 位作者 冒泽慧 赵环宇 《控制理论与应用》 北大核心 2025年第4期796-804,共9页
针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪... 针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪后的信号分解成多个本征模态函数(IMF),使用方差贡献率、相关系数和信息熵筛选出最优的IMF.将最优IMF重构后,对重构信号进行时间同步平均(TSA)去噪以减少故障诊断模型的数据计算量.将Tent混沌映射、混合正弦余弦算法和Levy飞行策略用于改进北方苍鹰优化(NGO)算法,得到一种新的INGO算法.同时,引入余弦因子以平衡正弦余弦算法的全局和局部开发能力.最后,利用INGO算法对HKELM进行优化,用以提高HKELM模型的故障诊断准确率.将所提方法应用于两个案例对模型进行检验,实验结果表明,本文所提方法具有可行性和优越性. 展开更多
关键词 混合极限学习 改进北方苍鹰优化算法 时变滤波经验模态分解 故障诊断
在线阅读 下载PDF
基于改进压缩感知与深度多核极限学习机的轴承故障诊断方法
6
作者 付强 胡东 +2 位作者 杨童亮 罗国庆 谭为民 《机械强度》 北大核心 2025年第6期48-56,共9页
针对传统轴承故障诊断采样数据量大、诊断时间长和故障特征选择主观性强等问题,基于压缩感知(Compressed Sensing,CS)和深度多核极限学习机(Deep Multi-Kernel Extreme Learning Machine,DMKELM)理论,提出了CS-DMKELM滚动轴承智能诊断... 针对传统轴承故障诊断采样数据量大、诊断时间长和故障特征选择主观性强等问题,基于压缩感知(Compressed Sensing,CS)和深度多核极限学习机(Deep Multi-Kernel Extreme Learning Machine,DMKELM)理论,提出了CS-DMKELM滚动轴承智能诊断模型。首先,对变换域信号阈值处理得到稀疏信号,使用高斯随机矩阵作为测量矩阵,对处理后的数据进行压缩;其次,使用压缩后的数据作为DMKELM的输入信号,利用粒子群优化(Particle Swarm Optimization,PSO)算法对关键参数进行优化,实现故障的智能诊断。结果表明,所提方法可使用较少的轴承诊断数据,利用DMKELM从少量测量信号中自动提取轴承的特征信息,实现了轴承的快速故障诊断。在诊断时间0.55 s的情况下,最终识别准确率可达99.29%。所提方法不仅诊断时间更短,而且诊断精度较高,为处理海量轴承数据的故障诊断提供了新方法。 展开更多
关键词 压缩感知 轴承 函数 极限学习 故障诊断
在线阅读 下载PDF
基于小波核极限学习机的烟叶烘烤过程的智能识别 被引量:4
7
作者 邢玉清 樊彩霞 +2 位作者 豆根生 宋朝鹏 吴莉莉 《中国烟草学报》 CAS CSCD 北大核心 2024年第1期55-62,共8页
烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷... 烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量。针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法。实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷边、小打筒、大打筒和干筋6个烘烤阶段分别提取了颜色、纹理和温湿度特征,组建了9维特征向量进入小波核极限学习机,通过增量型算法自适应地选择神经元个数,快速准确地识别了6个阶段,得到了98.33%的识别率。实验结果表明本文提出的基于小波核极限学习机的烟叶烘烤过程的智能识别方法具有一定的可行性,为研发烟叶烘烤智能调控系统奠定了理论基础。 展开更多
关键词 极限学习 小波函数 烟叶烘烤 特征提取 识别
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:5
8
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合极限学习 小波包变换 超参数优化
在线阅读 下载PDF
基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断 被引量:4
9
作者 徐哲熙 刘婷 +3 位作者 任晟民 陈建林 吴凤娇 王斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期41-51,共11页
水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信... 水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信号中蕴含大量噪声信号,干扰故障诊断的问题,提出一种时移多尺度波动散布熵和改进核极限学习机相结合的水电机组故障诊断方法。首先,结合信息熵理论与时移思想,在多尺度波动散布熵的基础上,采用时移理论替代多尺度波动散布熵(MFDE)中传统的粗粒化过程,提出时移多尺度波动散布熵(TSMFDE),通过仿真实验,证明所提方法具有良好的时序长度鲁棒性、抗噪性及特征提取能力,解决了传统多尺度熵粗粒化不足的问题。然后,利用具有可移植性强、寻优能力强和收敛速度快等特征的算术优化算法(AOA)对核极限学习机(KELM)的正则化参数和核函数参数进行寻优,建立AOA-KELM分类器,解决了KELM超参数难以调节的问题。最终,通过转子试验台模拟实验,将TSMFDE提取的特征输入分类器中,完成模式识别工作。仿真结果表明,所提模型取得最高的诊断精度,达到了100.0%,相对于其他流行模型,本文所提模型展现了明显的优势,验证了所提模型的良好诊断精度。 展开更多
关键词 时移多尺度波动散布熵 极限学习 算术优化算法 水电 故障诊断
在线阅读 下载PDF
基于北方苍鹰优化核极限学习机的玉米品种鉴别研究 被引量:3
10
作者 倪金 索丽敏 +1 位作者 刘海龙 赵蕊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1584-1590,共7页
玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该... 玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该研究基于近红外光谱技术结合核极限学习机(KELM)针对玉米品种分类问题构建鉴别模型,利用甜糯黄玉米、甜妃、昌甜、金色超人、香甜5号五种玉米种子,每种取(13±0.5)g作为一份样品,共计126个样品作为研究对象,对采集的近红外光谱数据进行标准正态变量变换(SNV)处理后采用竞争性自适应重加权采样法(CARS)对数据集进行降维。按照5∶1的比例将样本随机分为训练集和测试集,探讨北方苍鹰优化算法(NGO)对KELM模型性能的影响。分别使用NGO算法、粒子群算法(PSO)和灰狼算法(GWO)对KELM模型的两个重要参正则化参数C和高斯核函数γ进行寻优,选择五折交叉验证识别准确率最高时对应的C和γ作为建模参数,建立KELM分类模型。将各算法寻优后建立的KELM模型性能进行对比。实验发现,通过NGO算法寻优后建立的KELM模型性能高于其他两种算法优化的KELM模型,测试集识别准确率可达100%。在CARS降维的基础上分别建立CARS-NGO-KELM、CARS-PSO-KELM和CARS-GWO-KELM模型,结果表明,在面对降维后的数据时NGO算法仍能表现较好的性能,其测试集准确率和F 1值均达到了100%。为了验证样本数量对模型的影响,使用各品种样品数量同步后的共计90个样品重新训练KELM模型。结果表明,在同步各类样品数量后,各个模型在训练集和测试集上的表现均有提升。该研究在近红外光谱的基础上引入多种优化算法构建核极限学习机模型并将识别准确率提升至100%,实现了对玉米种子快速、无损、准确的品种鉴别,研究结果为玉米品种快速鉴别提供了一种新方法,同时也对监管部门具有一定的指导意义。 展开更多
关键词 近红外光谱 玉米 北方苍鹰 竞争性自适应加权采样 极限学习
在线阅读 下载PDF
高光谱结合哈里斯鹰优化核极限学习机鉴别化橘红胎切片年份 被引量:1
11
作者 谢百亨 马晋芳 +5 位作者 周泳欣 韩雪勤 陈嘉泽 朱思祁 杨懋勋 黄富荣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1494-1500,共7页
化橘红胎是药用历史悠久的广东省道地中药材,由于其制品收藏年份越久远价格越高,市面上常有以次充好的现象。为此,采用高光谱成像技术,结合哈里斯鹰优化核极限学习机对四组不同年份的化橘红胎切片样品进行鉴别。采集四个年份共193个化... 化橘红胎是药用历史悠久的广东省道地中药材,由于其制品收藏年份越久远价格越高,市面上常有以次充好的现象。为此,采用高光谱成像技术,结合哈里斯鹰优化核极限学习机对四组不同年份的化橘红胎切片样品进行鉴别。采集四个年份共193个化橘红胎切片样本400~1000 nm的高光谱图像。首先采用主成分分析法(PCA)分析化橘红胎切片的原始反射光谱,然后分别采用Savitzky-Golay平滑(S-G平滑)、多元散射校正(MSC)、标准正态变量交换(SNV)对样本光谱进行预处理并建立核极限学习机(KELM)模型;发现经SNV处理的样本光谱的判别准确率最高,训练集达到99.24%,测试集95.56%;进一步用竞争性自适应重加权算法(CARS)、蒙特卡洛无信息变量消除法(MCUVE)对样本光谱进行特征波长的选择;最后,采用KELM建立判别模型,同时使用哈里斯鹰算法(HHO)优化KELM参数选择并比较建模效果。结果表明:基于HHO-KELM的判别效果相较KELM有0.76%~4.44%的提升,通过MCUVE筛选所得特征波段信息冗余明显减少且精度提升,训练集和测试集最佳准确率均可达100%,故采用高光谱成像技术可以实现对不同年份的化橘红胎切片进行无损鉴别。 展开更多
关键词 化橘红胎 高光谱成像 特征波长 极限学习
在线阅读 下载PDF
融合核极限学习机与PSR的混沌交通流预测 被引量:2
12
作者 夏晶晶 陈振 《计算机工程与设计》 北大核心 2024年第6期1880-1887,共8页
传统短时交通流预测精度低、稳定性差,提出一种结合改进蝴蝶算法优化核极限学习机与相空间重构的短时交通流预测模型。结合量子自适应种群初始化、邻域扰动和惯性权重对蝴蝶算法改进,利用改进蝴蝶算法对核极限学习机超参寻优。利用混沌... 传统短时交通流预测精度低、稳定性差,提出一种结合改进蝴蝶算法优化核极限学习机与相空间重构的短时交通流预测模型。结合量子自适应种群初始化、邻域扰动和惯性权重对蝴蝶算法改进,利用改进蝴蝶算法对核极限学习机超参寻优。利用混沌理论确定样本时序最佳延迟时间和嵌入维数,利用PSR对样本重构,利用优化核极限学习机建立短时混沌交通流预测模型。采用郑州市某主干路口车流实测数据进行实证分析,其结果表明,改进模型能够有效降低预测误差,实现混沌交通流实时准确预测。 展开更多
关键词 相空间重构 极限学习 交通流预测 蝴蝶优化算法 量子自适应 邻域扰动 惯性权重
在线阅读 下载PDF
基于稀疏核增量超限学习机的机载设备在线状态预测 被引量:6
13
作者 张伟 许爱强 高明哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第10期2089-2098,共10页
为实现对机载设备工作状态的在线状态预测,提出了一种稀疏核增量超限学习机(ELM)算法。针对核在线学习中核矩阵膨胀问题,基于瞬时信息测量提出了一个融合构造与修剪策略的两步稀疏化方法。通过在构造阶段最小化字典冗余,在修剪阶段最大... 为实现对机载设备工作状态的在线状态预测,提出了一种稀疏核增量超限学习机(ELM)算法。针对核在线学习中核矩阵膨胀问题,基于瞬时信息测量提出了一个融合构造与修剪策略的两步稀疏化方法。通过在构造阶段最小化字典冗余,在修剪阶段最大化字典元素的瞬时条件自信息量,选择一个具有固定记忆规模的稀疏字典。针对基于核的增量超限学习机核权重更新问题,提出改进的减样学习算法,其可以实现字典中任一个核函数删除后剩余核函数Gram矩阵的逆矩阵的前向递推更新。通过对某型飞机发动机的状态预测,在预测数据长度等于20的条件下,本文提出的算法将预测的整体平均误差率下降到2.18%,相比于3种流形的核超限学习机在线算法,预测精度分别提升了0.72%、0.14%和0.13%。 展开更多
关键词 状态预测 在线学习 稀疏测量 超限学习(ELM) 有效集
在线阅读 下载PDF
基于近邻成分分析与优化核极限学习机的光伏接入配电网漏电识别 被引量:7
14
作者 汪自虎 王文天 +3 位作者 惠慧 王铭 李刚 许洪华 《高压电器》 CAS CSCD 北大核心 2024年第6期203-211,共9页
在光伏接入的配电网中,现有漏电保护装置无法区分光伏设备漏电流与发生生物触电时的故障漏电流,导致系统存在安全隐患。针对此问题,提出一种基于近邻成分分析(neighborhood component analysis,NCA)与核极限学习机(kernel extreme learn... 在光伏接入的配电网中,现有漏电保护装置无法区分光伏设备漏电流与发生生物触电时的故障漏电流,导致系统存在安全隐患。针对此问题,提出一种基于近邻成分分析(neighborhood component analysis,NCA)与核极限学习机(kernel extreme learning machine,KELM)的光伏接入配电网漏电识别方法。首先,构建了9维原始故障特征集,并采用NCA从9维特征集中选择得到4维高相关性特征子集;然后,将得到的4维特征子集作为KELM的输入,建立基于KELM的漏电识别模型,并通过麻雀搜索算法(sparrow search algorithm,SSA)对KELM模型中的参数进行优化;最后,将所提SSA-KELM方法应用于漏电识别,并与标准核极限学习机(KELM)、支持向量机(SVM)、BP神经网络(BPNN)进行了对比。比较结果表明:SSA-KELM对光伏接入配电网漏电类型的识别率最高,平均识别准确率达97.98%,为有效识别生物体触电与光伏漏电提供一定理论参考。 展开更多
关键词 光伏接入的配电网 生物触电 光伏设备漏电 近邻成分分析 极限学习 麻雀搜索算法
在线阅读 下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:4
15
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合极限学习 超参数优化
在线阅读 下载PDF
改进蜣螂算法优化混合核极限学习机的系统谐波阻抗估计 被引量:2
16
作者 夏焰坤 黄鹏 +2 位作者 任俊杰 朱赵晴 王宛婷 《电力系统及其自动化学报》 CSCD 北大核心 2024年第11期69-78,共10页
为准确估计系统谐波阻抗,提出一种改进蜣螂算法IDBO(improved dung beetle optimizer)优化混合核极限学习机HKELM(hybrid kernel extreme learning machine)的系统谐波阻抗估计方法。首先,在传统蜣螂算法基础上引入Cubic混沌映射、t分... 为准确估计系统谐波阻抗,提出一种改进蜣螂算法IDBO(improved dung beetle optimizer)优化混合核极限学习机HKELM(hybrid kernel extreme learning machine)的系统谐波阻抗估计方法。首先,在传统蜣螂算法基础上引入Cubic混沌映射、t分布扰动和高斯柯西变异扰动等方法,通过使用IDBO算法对HKELM进行多参数寻优;其次,将公共连接点处谐波电压和电流数据代入IDBO-HKELM,实现对系统谐波阻抗的精确估计;最后通过仿真和实例分析并对比多种方法,结果表明,所提方法在不同背景谐波波动条件和两侧阻抗差异场景下具有更好的估计精度。 展开更多
关键词 谐波阻抗估计 蜣螂算法 混合极限学习 谐波责任划分
在线阅读 下载PDF
基于改进核极限学习机和集成算法的脱硫出口SO_(2)浓度预测
17
作者 闫浩思 赵文杰 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第5期108-117,共10页
脱硫出口SO_(2)浓度的准确预测对实现脱硫系统经济运行具有重要意义,针对脱硫出口SO_(2)浓度影响因素众多,难以准确预测这一问题,提出了基于龙格库塔优化的核极限学习机(KELM)和改进AdaBoost集成算法相结合的预测模型。首先采用核极限... 脱硫出口SO_(2)浓度的准确预测对实现脱硫系统经济运行具有重要意义,针对脱硫出口SO_(2)浓度影响因素众多,难以准确预测这一问题,提出了基于龙格库塔优化的核极限学习机(KELM)和改进AdaBoost集成算法相结合的预测模型。首先采用核极限学习机作为弱预测器,利用AdaBoost集成算法组合构建强预测器,通过调整脱硫系统不同工况下运行数据权重,建立了一种基于AdaBoost集成算法的出口SO_(2)浓度预测模型。为进一步提升模型学习性能和预测精度,通过引入惩罚系数和先验知识参数改进AdaBoost算法的损失函数,运用龙格库塔算法对KELM的正则系数C和核参数S进行寻优,克服初始参数设置对模型稳定性和预测精度的影响。最后利用电厂运行数据进行仿真实验,结果表明,所建立的出口SO_(2)浓度集成模型预测性能优越、准确度高,能够为脱硫系统优化控制提供技术支持。 展开更多
关键词 极限学习 AdaBoost集成学习 龙格库塔算法 脱硫出口SO_(2)浓度 预测模型
在线阅读 下载PDF
基于核极限学习机的下肢关节力矩预测方法 被引量:1
18
作者 宋永献 王祥祥 +3 位作者 李媛媛 夏文豪 李豪 宋文泽 《科学技术与工程》 北大核心 2024年第11期4599-4606,共8页
针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将... 针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将高斯核函数与ELM相融合,并采用遗传算法(genetic algorithm,GA)与粒子群优化(particle swarm optimization,PSO)结合的基因粒子群GAPSO对KELM的参数进行优化。首先,采集1位在跑步机上以0.4、0.5、0.6、0.7和0.8 m/s等5个不同速度行走的右下肢偏瘫患者运动数据并对数据进行预处理;其次,通过GAPSO对KELM进行优化,获得最优正则化系数C和核函数宽度参数S,将输出关节力矩与反向生物力学分析计算的关节作比较;最后,利用均方根误差(root mean square error,RMSE)和相关系数P来评价算法优越性。实验结果表明,基于GAPSO优化后的KELM(GAPSO-KELM)算法相对于PSO-KELM算法、KELM算法和ELM算法的平均最大均方根误差分别降低14%、18%、28%,且P除了0.8 m/s右侧踝关节内外翻是0.79外,其余P最小是0.84,GAPSO-KELM算法进一步提高预测精度,使其为康复治疗提供更有效的算法支持。 展开更多
关键词 高斯函数 极限学习 粒子群优化算法 遗传算法 均方根误差 相关系数
在线阅读 下载PDF
核主元分析与优化核极限学习机模型在电石炉爆炸风险评估中的应用
19
作者 毕颖 马世杰 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2075-2084,共10页
为准确判断电热法电石生产工艺中电石炉的爆炸风险等级,提出了一种精准有效的风险评估模型。首先,基于危险与可操作性(Hazard and Operability, HAZOP)分析筛选出人、物料、设备、管理四方面的34项爆炸风险因素,考虑到因素间存在非线性... 为准确判断电热法电石生产工艺中电石炉的爆炸风险等级,提出了一种精准有效的风险评估模型。首先,基于危险与可操作性(Hazard and Operability, HAZOP)分析筛选出人、物料、设备、管理四方面的34项爆炸风险因素,考虑到因素间存在非线性关联,采用核主元分析(Kernel Principal Component Analysis, KPCA)进行属性约简,减少冗杂信息的干扰。其次,利用融合了Tent混沌序列、高斯变异与混沌扰动的麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)寻优核极限学习机(Kernel Extreme Learning Machine, KELM)的惩罚系数与核参数,建立KPCA-ISSA-KELM风险评估模型。最后,使用该模型分析83组实例数据,选取其中59组用于模型训练,其余24组用于测试。在测试结果中,该模型正确分类了22组数据的风险等级,判别准确率为91.67%,在各项性能指标上均优于对照模型,表明该模型对电热法工艺电石炉的爆炸风险等级具备高识别精度。 展开更多
关键词 安全工程 风险评估 电石炉 主元分析(KPCA) 麻雀搜索算法(SSA) 极限学习(KELM)
在线阅读 下载PDF
基于粒子群优化的核极限学习机模型的风电功率区间预测方法 被引量:145
20
作者 杨锡运 关文渊 +1 位作者 刘玉奇 肖运启 《中国电机工程学报》 EI CSCD 北大核心 2015年第S1期146-153,共8页
风电功率预测能为电网规划和运行提供重要依据,传统预测方法多为点预测,其结果一般有不同程度的误差,区间预测方法能有效描述风电输出功率的不确定性因而逐步受到重视。针对短期风电功率概率区间预测问题,提出一种基于粒子群优化的核极... 风电功率预测能为电网规划和运行提供重要依据,传统预测方法多为点预测,其结果一般有不同程度的误差,区间预测方法能有效描述风电输出功率的不确定性因而逐步受到重视。针对短期风电功率概率区间预测问题,提出一种基于粒子群优化的核极限学习机(PSO-KELM)模型,用于风电功率区间预测。通过核极限学习机(KELM)建立预测模型,采用粒子群算法对KELM的输出权值进行优化,寻找最优预测区间上下限,充分利用了KELM学习速度快、泛化能力强的优点,实现了对风电功率的快速区间预测。通过与PSO-ELM模型对比分析风电场在不同置信水平下的概率预测结果,发现PSO-KELM模型的预测精度更高,速度更快,能够为风电功率区间预测及风电并网安全稳定运行提供决策支持。 展开更多
关键词 风电功率 区间预测 极限学习 粒子群
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部