Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Natural...Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Naturally derived oligosaccharides have shown significant anti-osteoporotic effects.Nystose(NST),an oligosaccharide,was isolated from the roots of Morinda officinalis How.(MO).The aim of the present study was to investigate the effects of NST on bone loss in ovariectomized mice,and explore the underlying mechanism of NST in promoting differentiation of BMSCs to osteoblasts.Administration of NST(40,80 and 160 mg/kg)and the positive control of estradiol valerate(0.2 mg/kg)for 8 weeks significantly prevented bone loss induced by ovariectomy(OVX),increased the bone mass density(BMD),improved the bone microarchitecture and reduced urine calcium and deoxypyridinoline(DPD)in ovariectomized mice,while inhibited the increase of body weight without significantly affecting the uterus weight.Furthermore,we found that NST increased osteogenic differentiation,inhibited adipogenic differentiation of BMSCs in vitro,and upregulated the expression of the key proteins of BMP and Wnt/β-catenin pathways.In addition,Noggin and Dickkopf-related protein-1(DKK-1)reversed the effect of NST on osteogenic differentiation and expression of the key proteins in BMP and Wnt/β-catenin pathway.The luciferase activities and the molecular docking analysis further supported the mechanism of NST.In conclusion,these results indicating that NST can be clinically used as a potential alternative medicine for the prevention and treatment of postmenopausal osteoporosis.展开更多
Photocatalytic oxygen reduction for hydrogen peroxide(H_(2)O_(2))synthesis presents a green and costeffective production method.However,achieving highly selective H_(2)O_(2)synthesis remains challenging,necessitating ...Photocatalytic oxygen reduction for hydrogen peroxide(H_(2)O_(2))synthesis presents a green and costeffective production method.However,achieving highly selective H_(2)O_(2)synthesis remains challenging,necessitating precise control over free radical reaction pathways and minimizing undesirable oxidative by-products.Herein,we report for the visible light-driven simultaneous co-photocatalytic reduction of O2to H_(2)O_(2)and oxidation of biomass using the atomic rubidium-nitride modified carbon nitride(CNRb).The optimized CNRb catalyst demonstrates a record photoreduction rate of 8.01 mM h^(-1)for H_(2)O_(2)generation and photooxidation rate of 3.75 mM h^(-1)for furfuryl alcohol to furoic acid,achieving a remarkable solar-to-chemical conversion(SCC)efficiency of up to 2.27%.Experimental characterizations and DFT calculation disclosed that the introducing atomic Rb–N configurations allows for the high-selective generation of superoxide radicals while suppressing hydroxyl free radical formation.This is because the Rb–N serves as the new alternative site to perceive a stronger connection position for O2adsorption and reinforce the capability to extract protons,thereby triggering a high selective redox product formation.This study holds great potential in precisely regulating reactive radical processes at the atomic level,thereby paving the way for efficient synthesis of H_(2)O_(2)coupled with biomass valorization.展开更多
Background:Disruption of the blood–brain barrier(BBB)after a stroke can lead to brain injury and neurological impairment.Previous work confirmed the involvement of the immunoproteasome subunit of low molecular mass p...Background:Disruption of the blood–brain barrier(BBB)after a stroke can lead to brain injury and neurological impairment.Previous work confirmed the involvement of the immunoproteasome subunit of low molecular mass peptide 2(LMP2)in the pathophysiology of ischemia stroke.However,the relationship between the immunoproteasome LMP2 and the BBB remains unclear.Methods:Adult male Sprague–Dawley rats were subjected to transient middle cerebral artery occlusion/reperfusion(MCAO/R).Three days before MCAO,the rats were treated with lentivirus-mediated LMP2 shRNA preparations by stereotactical injection into the ipsilateral hemispheric region.The rat brain microvascular endothelial cell(RBMVEC)line was exposed to oxygen–glucose deprivation/reperfusion(OGD/R)to mimic ischemic conditions in vitro.The RNA interference-mediated knockdown of LMP2 orβ-catenin was analysed in vivo and in vitro.Analysis of the quantity of extravasated Evans blue(EB)and cerebral fluorescent angiography were performed to evaluate the integrity of the BBB.Immunofluorescence and Western blotting were employed to detect the expression of target proteins.Cell migration was evaluated using a scratch migration assay.The results of immunofluorescence,Western blotting and cell migration were quantified using the software ImageJ(Version 1.53).Parametric data from different groups were compared using one-way ANOVA followed by the least significant difference(LSD)test.Results:Cerebral ischemia led to lower levels of structural components of the BBB such as tight junction proteins[occludin,claudin-1 and zonula occludens(ZO-1)]in the MCAO/R group compared with the sham group(P<0.001).However,inhibition of the immunoproteasome LMP2 restored the expression of these proteins,resulting in higher levels of occludin,claudin-1 and ZO-1 in the LMP2-shRNA group compared with the control-shRNA group(P<0.001).In addition,inhibition of the immunoproteasome LMP2 contributed to higher microvascular density and decreased BBB permeability[e.g.,the quantity of extravasated EB:LMP2-shRNA group(58.54±7.37)μg/g vs.control-shRNA group(103.74±4.32)μg/g,P<0.001],and promoted the upregulation of Wnt-3a andβ-catenin proteins in rats following MCAO/R.In vitro experiments,OGD/R induced marked upregulation of LMP2,proapoptotic protein Bax and cleaved caspase-3,and downregulation of occludin,claudin-1,ZO-1 and Bcl-2,as well as inhibition of the Wnt/β-catenin pathway Wnt-3a andβ-catenin proteins in RBMVECs,compared with the control group under normal culture conditions(P<0.001).However,silencing of LMP2 gene expression reversed these protein changes and promoted proliferation and migration of RBMVECs following OGD/R.Silencing ofβ-catenin by transfection of RBMVECs withβ-catenin-si RNA aggravated the downregulation of tight junction proteins,and reduced the proliferation and migration of RBMVECs following OGD/R,compared with the control-siRNA group(P<0.001).LMP2-si RNA andβ-catenin-si RNA co-transfection partly counteracted the beneficial effects of silencing LMP2-siRNA on the levels of tight junction proteins in RBMVECs exposed to OGD/R.Conclusions:This study suggests that inhibition of the immunoproteasome LMP2 ameliorates ischemia/hypoxia induced BBB injury,and that the molecular mechanism involves the immunoproteasome-regulated activation of the Wnt/β-catenin signalling pathway under ischemic conditions.展开更多
The incidence rate of colon cancer ranks the third among malignant tumors worldwide.Gloeostereum incarnatum(GI),a fungus with homology of medicine and food,has multiple pharmacological activities.It was investigated i...The incidence rate of colon cancer ranks the third among malignant tumors worldwide.Gloeostereum incarnatum(GI),a fungus with homology of medicine and food,has multiple pharmacological activities.It was investigated in this study that the anti-colon cancer effect of polysaccharides purifi ed from GI(GIPS)in ApcMinC/Gpt mice(an in situ colon cancer mouse model).Eight-week administration with GIPS at doses of 30 or 90 mg/kg strongly inhibited tumor growth including the reduction on numbers and the suppression of the size without infl uencing the animals’body weight and organ functions.According to the proteomics performing by antibody array,among 308 detected cytokines,GIPS significantly regulated 89 of them.Compared with vehicle-treated mice,GIPS effectively reduced the levels of interleukin(IL)-1β,IL-4,IL-6,IL-17,IL-22,tumor necrosis factor(TNF)-α,matrix metalloproteinase(MMP)-2,and enhanced the levels of IL-15 and IL-18 in serum and/or colon tissues,which suggested its anti-inflammation of GIPS.GIPS suppressed nuclear aggregation of β-catenin,affected the expression of WNT1 and related proteins,thereby regulated the activation of the Wnt signaling.Altogether,GIPS can inhibit the growth of colon cancer,at least partially,via inhibiting the Wnt/β-catenin signaling pathway.展开更多
Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelia...Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelial(RPE)cell photooxidative damage needs further exploration.We investigated the effects of C3G on blue light-irradiated A2E-containing RPE cells and explored whether sphingolipid,mitogen-activated protein kinase(MAPK),and mitochondria-mediated pathways are involved in this mechanism.Blue light irradiation led to mitochondria and lysosome damage in RPE cells,whereas C3G preserved mitochondrial morphology and function and maintained the lysosomal integrity.C3G suppressed the phosphorylation of JNK and p38 MAPK and mitochondria-mediated pathways to inhibit RPE cell apoptosis.Lipidomics data showed that C3G protected RPE cells against blue light-induced lipid peroxidation and apoptosis by maintaining sphingolipids balance.C3G significantly inhibited ceramide(Cer d18:0/15:0,Cer d18:0/16:0 and Cer d18:0/18:0)accumulation and elevated galactosylceramide(GalCer d18:1/15:0 and GalCer d18:1/16:0)levels in the irradiated A2E-containing RPE cells.Furthermore,C3G attenuated cell membrane damage by increasing phosphatidylcholine and phosphatidylserine levels.C3G inhibited apoptosis and preserved the structure of mitochondria and lysosome by regulating sphingolipid signaling and suppression of MAPK activation in RPE cells.Thus,dietary supplementation of C3G prevents retinal photooxidative damage.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effec...We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.展开更多
基金support from the Public Platform of Medical Research Center,Academy of Chinese Medical Science,Zhejiang Chinese Medical Universitysponsored by the National Natural Science Foundation of China(81973534,U1505226)。
文摘Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Naturally derived oligosaccharides have shown significant anti-osteoporotic effects.Nystose(NST),an oligosaccharide,was isolated from the roots of Morinda officinalis How.(MO).The aim of the present study was to investigate the effects of NST on bone loss in ovariectomized mice,and explore the underlying mechanism of NST in promoting differentiation of BMSCs to osteoblasts.Administration of NST(40,80 and 160 mg/kg)and the positive control of estradiol valerate(0.2 mg/kg)for 8 weeks significantly prevented bone loss induced by ovariectomy(OVX),increased the bone mass density(BMD),improved the bone microarchitecture and reduced urine calcium and deoxypyridinoline(DPD)in ovariectomized mice,while inhibited the increase of body weight without significantly affecting the uterus weight.Furthermore,we found that NST increased osteogenic differentiation,inhibited adipogenic differentiation of BMSCs in vitro,and upregulated the expression of the key proteins of BMP and Wnt/β-catenin pathways.In addition,Noggin and Dickkopf-related protein-1(DKK-1)reversed the effect of NST on osteogenic differentiation and expression of the key proteins in BMP and Wnt/β-catenin pathway.The luciferase activities and the molecular docking analysis further supported the mechanism of NST.In conclusion,these results indicating that NST can be clinically used as a potential alternative medicine for the prevention and treatment of postmenopausal osteoporosis.
基金National Natural Science Foundation of China(22309032,22109120,and 62104170)Guangdong Basic and Applied Basic Research Foundation(2022A1515011737)+2 种基金Science and Technology Program of Guangzhou(2023A04J1395)GDAS’Project of Science and Technology Development(2021GDASYL-20210102010)Zhejiang Provincial Natural Science Foundation of China(LY23F040001)。
文摘Photocatalytic oxygen reduction for hydrogen peroxide(H_(2)O_(2))synthesis presents a green and costeffective production method.However,achieving highly selective H_(2)O_(2)synthesis remains challenging,necessitating precise control over free radical reaction pathways and minimizing undesirable oxidative by-products.Herein,we report for the visible light-driven simultaneous co-photocatalytic reduction of O2to H_(2)O_(2)and oxidation of biomass using the atomic rubidium-nitride modified carbon nitride(CNRb).The optimized CNRb catalyst demonstrates a record photoreduction rate of 8.01 mM h^(-1)for H_(2)O_(2)generation and photooxidation rate of 3.75 mM h^(-1)for furfuryl alcohol to furoic acid,achieving a remarkable solar-to-chemical conversion(SCC)efficiency of up to 2.27%.Experimental characterizations and DFT calculation disclosed that the introducing atomic Rb–N configurations allows for the high-selective generation of superoxide radicals while suppressing hydroxyl free radical formation.This is because the Rb–N serves as the new alternative site to perceive a stronger connection position for O2adsorption and reinforce the capability to extract protons,thereby triggering a high selective redox product formation.This study holds great potential in precisely regulating reactive radical processes at the atomic level,thereby paving the way for efficient synthesis of H_(2)O_(2)coupled with biomass valorization.
基金supported by the National Natural Science Foundation of China(81771250)the Natural Science Foundation of Fujian Province,China(2020J011059,2020R1011004)+1 种基金the Joint Funds for the Innovation of Science and Technology of Fujian Province,China(2017Y9065)the High-level hospital foster grants from Fujian Provincial Hospital,Fujian Province,China(2020HSJJ07)。
文摘Background:Disruption of the blood–brain barrier(BBB)after a stroke can lead to brain injury and neurological impairment.Previous work confirmed the involvement of the immunoproteasome subunit of low molecular mass peptide 2(LMP2)in the pathophysiology of ischemia stroke.However,the relationship between the immunoproteasome LMP2 and the BBB remains unclear.Methods:Adult male Sprague–Dawley rats were subjected to transient middle cerebral artery occlusion/reperfusion(MCAO/R).Three days before MCAO,the rats were treated with lentivirus-mediated LMP2 shRNA preparations by stereotactical injection into the ipsilateral hemispheric region.The rat brain microvascular endothelial cell(RBMVEC)line was exposed to oxygen–glucose deprivation/reperfusion(OGD/R)to mimic ischemic conditions in vitro.The RNA interference-mediated knockdown of LMP2 orβ-catenin was analysed in vivo and in vitro.Analysis of the quantity of extravasated Evans blue(EB)and cerebral fluorescent angiography were performed to evaluate the integrity of the BBB.Immunofluorescence and Western blotting were employed to detect the expression of target proteins.Cell migration was evaluated using a scratch migration assay.The results of immunofluorescence,Western blotting and cell migration were quantified using the software ImageJ(Version 1.53).Parametric data from different groups were compared using one-way ANOVA followed by the least significant difference(LSD)test.Results:Cerebral ischemia led to lower levels of structural components of the BBB such as tight junction proteins[occludin,claudin-1 and zonula occludens(ZO-1)]in the MCAO/R group compared with the sham group(P<0.001).However,inhibition of the immunoproteasome LMP2 restored the expression of these proteins,resulting in higher levels of occludin,claudin-1 and ZO-1 in the LMP2-shRNA group compared with the control-shRNA group(P<0.001).In addition,inhibition of the immunoproteasome LMP2 contributed to higher microvascular density and decreased BBB permeability[e.g.,the quantity of extravasated EB:LMP2-shRNA group(58.54±7.37)μg/g vs.control-shRNA group(103.74±4.32)μg/g,P<0.001],and promoted the upregulation of Wnt-3a andβ-catenin proteins in rats following MCAO/R.In vitro experiments,OGD/R induced marked upregulation of LMP2,proapoptotic protein Bax and cleaved caspase-3,and downregulation of occludin,claudin-1,ZO-1 and Bcl-2,as well as inhibition of the Wnt/β-catenin pathway Wnt-3a andβ-catenin proteins in RBMVECs,compared with the control group under normal culture conditions(P<0.001).However,silencing of LMP2 gene expression reversed these protein changes and promoted proliferation and migration of RBMVECs following OGD/R.Silencing ofβ-catenin by transfection of RBMVECs withβ-catenin-si RNA aggravated the downregulation of tight junction proteins,and reduced the proliferation and migration of RBMVECs following OGD/R,compared with the control-siRNA group(P<0.001).LMP2-si RNA andβ-catenin-si RNA co-transfection partly counteracted the beneficial effects of silencing LMP2-siRNA on the levels of tight junction proteins in RBMVECs exposed to OGD/R.Conclusions:This study suggests that inhibition of the immunoproteasome LMP2 ameliorates ischemia/hypoxia induced BBB injury,and that the molecular mechanism involves the immunoproteasome-regulated activation of the Wnt/β-catenin signalling pathway under ischemic conditions.
基金This work was supported by the Ministry of Science and Technology of the People’s Republic of China(Grant No.2018YFE0107800)the“13th Five-year”Science and Technology Projects from Education Department in Jilin Province of P.R.China(Grant No.JJKH20190108KJ)Industrial Technology Research and Development Projects from Development and Reform Commission of Jilin Province(Grant No.2019C050-8).
文摘The incidence rate of colon cancer ranks the third among malignant tumors worldwide.Gloeostereum incarnatum(GI),a fungus with homology of medicine and food,has multiple pharmacological activities.It was investigated in this study that the anti-colon cancer effect of polysaccharides purifi ed from GI(GIPS)in ApcMinC/Gpt mice(an in situ colon cancer mouse model).Eight-week administration with GIPS at doses of 30 or 90 mg/kg strongly inhibited tumor growth including the reduction on numbers and the suppression of the size without infl uencing the animals’body weight and organ functions.According to the proteomics performing by antibody array,among 308 detected cytokines,GIPS significantly regulated 89 of them.Compared with vehicle-treated mice,GIPS effectively reduced the levels of interleukin(IL)-1β,IL-4,IL-6,IL-17,IL-22,tumor necrosis factor(TNF)-α,matrix metalloproteinase(MMP)-2,and enhanced the levels of IL-15 and IL-18 in serum and/or colon tissues,which suggested its anti-inflammation of GIPS.GIPS suppressed nuclear aggregation of β-catenin,affected the expression of WNT1 and related proteins,thereby regulated the activation of the Wnt signaling.Altogether,GIPS can inhibit the growth of colon cancer,at least partially,via inhibiting the Wnt/β-catenin signaling pathway.
基金funded by the National Natural Science Foundation of China(31901698)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(2019QNRC001)。
文摘Cyanidin-3-glucoside(C3G)is the most common anthocyanin in dark grains and berries and is a food functional factor to improve visual health.However,the mechanisms of C3G on blue light-induced retinal pigment epithelial(RPE)cell photooxidative damage needs further exploration.We investigated the effects of C3G on blue light-irradiated A2E-containing RPE cells and explored whether sphingolipid,mitogen-activated protein kinase(MAPK),and mitochondria-mediated pathways are involved in this mechanism.Blue light irradiation led to mitochondria and lysosome damage in RPE cells,whereas C3G preserved mitochondrial morphology and function and maintained the lysosomal integrity.C3G suppressed the phosphorylation of JNK and p38 MAPK and mitochondria-mediated pathways to inhibit RPE cell apoptosis.Lipidomics data showed that C3G protected RPE cells against blue light-induced lipid peroxidation and apoptosis by maintaining sphingolipids balance.C3G significantly inhibited ceramide(Cer d18:0/15:0,Cer d18:0/16:0 and Cer d18:0/18:0)accumulation and elevated galactosylceramide(GalCer d18:1/15:0 and GalCer d18:1/16:0)levels in the irradiated A2E-containing RPE cells.Furthermore,C3G attenuated cell membrane damage by increasing phosphatidylcholine and phosphatidylserine levels.C3G inhibited apoptosis and preserved the structure of mitochondria and lysosome by regulating sphingolipid signaling and suppression of MAPK activation in RPE cells.Thus,dietary supplementation of C3G prevents retinal photooxidative damage.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology (NRF2020R1A2C1014798 to E-K Kim)。
文摘We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.