Soybean frogeye leaf spot(FLS)disease is a worldwide disease caused by Cercospora sojina Hara.It is one of the major diseases suffered by soybean during the growth cycle,which seriously damages the yield and seed qual...Soybean frogeye leaf spot(FLS)disease is a worldwide disease caused by Cercospora sojina Hara.It is one of the major diseases suffered by soybean during the growth cycle,which seriously damages the yield and seed quality of soybean.The current resistant varieties are difficult to meet the production demand.The breeders have identified 50 different physiological small species and discussed the physiological and biochemical characteristics of soybean resistance to FLS.In soybean disease resistance breeding,resistance resources are screened for the main physiological races in different countries,resistance materials are created,more than 100 genome regions associated with resistance are located,and 12 resistance-related genes are identified.In order to promote the research of soybean disease resistance breeding,this paper expounded and analyzed the pathogenesis characteristics of soybean FLS,the division of races,the physiological and biochemical mechanism of soybean resistance to FLS disease,quantitative trait locus(QTL),quantitative trait nucleotides(QTN),genes of resistance sites,the screening of resistant germplasm resources,and the breeding of new varieties,so as to gain an in-depth understanding of the pathogenesis principle of soybean FLS disease.In order to provide a theoretical basis and technical support for the breeding of soybean FLS disease,the resistance mechanism of soybean FLS disease was analyzed from the molecular level.展开更多
Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issue...Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issues faced by cotton production is seed purity,as cotton is often cross-pollinated,therefore breeders are hard to maintain seed purity.For example,non-Bt cotton varieties are often contaminated with Bt seeds which is an important limiting factor.Another important consideration in cotton breeding is rapid generation advancement.展开更多
根肿病和草害严重威胁油菜的产量和品质。为选育抗根肿病(clubroot-resistant,CR)和抗除草剂(herbicide-resistant,HR)的油菜品种,通过分子标记辅助选择聚合育种策略将抗根肿病位点CRb和PbBa8.1、抗除草剂位点ALS1R和ALS3R导入油菜常规...根肿病和草害严重威胁油菜的产量和品质。为选育抗根肿病(clubroot-resistant,CR)和抗除草剂(herbicide-resistant,HR)的油菜品种,通过分子标记辅助选择聚合育种策略将抗根肿病位点CRb和PbBa8.1、抗除草剂位点ALS1R和ALS3R导入油菜常规品种中双11(ZS11)中,获得3个改良株系ZS11CR(CRb+PbBa8.1)、ZS11HR(ALS1R+ALS3R)和ZS11CHR(CRb+PbBa8.1+ALS1R+ALS3R)。利用根肿菌4号生理小种(湖北枝江)和噻吩磺隆除草剂(45 g a.i.ha^(-1))对ZS11CR、ZS11HR和ZS11CHR的抗性进行评价,结果表明:ZS11CR、ZS11CHR对4号生理小种抗性达到免疫水平,ZS11HR、ZS11CHR对噻吩磺隆除草剂抗性显著。田间农艺性状调查结果表明,ZS11CR、ZS11HR和ZS11CHR的株高较ZS11一定程度增加,而在开花期、分枝数、主花序角果数、角果长、每角果粒数、千粒重等性状上没有显著差异。本研究获得了3个改良株系,其中ZS11CR具有根肿病抗性、ZS11HR具有除草剂抗性、ZS11CHR兼具根肿病抗性和除草剂抗性,这些改良株系不仅目标性状得到了改良,同时维持了ZS11的优良农艺性状,具有一定的应用潜力。展开更多
基金Supported by the 14th Five-Year National Key Research and Development Program(2021YFD1201103–01–05)the National Natural Science Foundation of China(32301819)the Cooperation Project of Research and Development Center between Wudalianchi Government and Northeast Agricultural University.
文摘Soybean frogeye leaf spot(FLS)disease is a worldwide disease caused by Cercospora sojina Hara.It is one of the major diseases suffered by soybean during the growth cycle,which seriously damages the yield and seed quality of soybean.The current resistant varieties are difficult to meet the production demand.The breeders have identified 50 different physiological small species and discussed the physiological and biochemical characteristics of soybean resistance to FLS.In soybean disease resistance breeding,resistance resources are screened for the main physiological races in different countries,resistance materials are created,more than 100 genome regions associated with resistance are located,and 12 resistance-related genes are identified.In order to promote the research of soybean disease resistance breeding,this paper expounded and analyzed the pathogenesis characteristics of soybean FLS,the division of races,the physiological and biochemical mechanism of soybean resistance to FLS disease,quantitative trait locus(QTL),quantitative trait nucleotides(QTN),genes of resistance sites,the screening of resistant germplasm resources,and the breeding of new varieties,so as to gain an in-depth understanding of the pathogenesis principle of soybean FLS disease.In order to provide a theoretical basis and technical support for the breeding of soybean FLS disease,the resistance mechanism of soybean FLS disease was analyzed from the molecular level.
基金the Research Project at International Center for Chemical and Biological Sciences,University of Karachi,Karachi,Pakistan。
文摘Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issues faced by cotton production is seed purity,as cotton is often cross-pollinated,therefore breeders are hard to maintain seed purity.For example,non-Bt cotton varieties are often contaminated with Bt seeds which is an important limiting factor.Another important consideration in cotton breeding is rapid generation advancement.
文摘根肿病和草害严重威胁油菜的产量和品质。为选育抗根肿病(clubroot-resistant,CR)和抗除草剂(herbicide-resistant,HR)的油菜品种,通过分子标记辅助选择聚合育种策略将抗根肿病位点CRb和PbBa8.1、抗除草剂位点ALS1R和ALS3R导入油菜常规品种中双11(ZS11)中,获得3个改良株系ZS11CR(CRb+PbBa8.1)、ZS11HR(ALS1R+ALS3R)和ZS11CHR(CRb+PbBa8.1+ALS1R+ALS3R)。利用根肿菌4号生理小种(湖北枝江)和噻吩磺隆除草剂(45 g a.i.ha^(-1))对ZS11CR、ZS11HR和ZS11CHR的抗性进行评价,结果表明:ZS11CR、ZS11CHR对4号生理小种抗性达到免疫水平,ZS11HR、ZS11CHR对噻吩磺隆除草剂抗性显著。田间农艺性状调查结果表明,ZS11CR、ZS11HR和ZS11CHR的株高较ZS11一定程度增加,而在开花期、分枝数、主花序角果数、角果长、每角果粒数、千粒重等性状上没有显著差异。本研究获得了3个改良株系,其中ZS11CR具有根肿病抗性、ZS11HR具有除草剂抗性、ZS11CHR兼具根肿病抗性和除草剂抗性,这些改良株系不仅目标性状得到了改良,同时维持了ZS11的优良农艺性状,具有一定的应用潜力。