期刊文献+
共找到568篇文章
< 1 2 29 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
Multiobjective optimal dispatch of microgrid based on analytic hierarchy process and quantum particle swarm optimization 被引量:7
2
作者 Yuxin Zhao Xiaotong Song +1 位作者 Fei Wang Dawei Cui 《Global Energy Interconnection》 CAS 2020年第6期562-570,共9页
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat... Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field. 展开更多
关键词 Analytic hierarchy process(AHP) quantum particle swarm optimization(QPSO) Multiobjective optimal dispatch Microgrid.
在线阅读 下载PDF
Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization 被引量:1
3
作者 高飞 李卓球 童恒庆 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第4期1196-1201,共6页
This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniqu... This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises. 展开更多
关键词 parameter estimation online chaos system quantum particle swarm optimization
在线阅读 下载PDF
Optimization of ANFIS Network Using Particle Swarm Optimization Modeling of Scour around Submerged Pipes
4
作者 Rahim Gerami Moghadam Saeid Shabanlou Fariborz Yosefvand 《Journal of Marine Science and Application》 CSCD 2020年第3期444-452,共9页
In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurri... In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurring at coastal regions.In this study,for the first time,the adaptive neuro-fuzzy inference system(ANFIS)is optimized using the particle swarm optimization(PSO)algorithm,and a meta-heuristic artificial intelligence model is developed for simulating the scour pattern around submerged pipes located in sedimentary beds.Afterward,six ANFIS-PSO models are developed by means of parameters affecting the scour depth.Then,the superior model is detected through sensitivity analysis.This model has the function of all input parameters.The calculated correlation coefficient and scatter index for this model are 0.993 and 0.047,respectively.The ratio of the pipe distance from the sedimentary bed to the submerged pipe diameter is introduced as the most effective input parameter.PSO significantly improves the performance of the ANFIS model.Approximately 36% of the scour depths simulated using the ANFIS model have an error less than 5%,whereas the value for ANFIS-PSO is roughly 72%. 展开更多
关键词 adaptive neuro-fuzzy inference system(ANFIS) Meta-heuristic model particle swarm optimization(PSO) Scour around submerged pipes Coastal regions
在线阅读 下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
5
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
在线阅读 下载PDF
Security-Reliability Analysis and Optimization for Cognitive Two-Way Relay Network with Energy Harvesting
6
作者 Luo Yi Zhou Lihua +3 位作者 Dong Jian Sun Yang Xu Jiahui Xi Kaixin 《China Communications》 SCIE CSCD 2024年第11期163-179,共17页
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node... This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm. 展开更多
关键词 artificial noise energy harvesting cognitive two-way relay network hardware impairments physical layer security security-reliability tradeoff self-adaptive quantum particle swarm optimization
在线阅读 下载PDF
Optimal operation of Internet Data Center with PV and energy storage type of UPS clusters 被引量:1
7
作者 Man Chen Yuxin Zhao +2 位作者 Yuxuan Li Peng Peng Xisheng Tang 《Global Energy Interconnection》 EI CSCD 2024年第1期61-70,共10页
With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of th... With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies. 展开更多
关键词 Three-tier optimization framework Energy storage type of the UPS EUPS cluster classification method quantum particle swarm optimization
在线阅读 下载PDF
Quantum control based on three forms of Lyapunov functions
8
作者 俞国慧 杨洪礼 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期216-222,共7页
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S... This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given. 展开更多
关键词 quantum system Lyapunov function particle swarm optimization simulated annealing algorithms quantum control
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略
9
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
基于多目标优化的装配式施工机械设备优化配置方法
10
作者 王宁 《佳木斯大学学报(自然科学版)》 2025年第2期142-145,共4页
提出了一种针对装配式建筑施工中机械设备配置问题的多目标优化方法,该方法通过建立一个整合了工期、成本和碳排放三个关键要素的综合优化模型,并运用无量纲化处理来协调这些目标之间的关系。这种方法基于一种改进的量子粒子群优化算法(... 提出了一种针对装配式建筑施工中机械设备配置问题的多目标优化方法,该方法通过建立一个整合了工期、成本和碳排放三个关键要素的综合优化模型,并运用无量纲化处理来协调这些目标之间的关系。这种方法基于一种改进的量子粒子群优化算法(Levy-QPSO),通过整合莱维飞行机制来提高搜索能力和防止陷入局部最优解。五个标准测试函数的实验结果证实了改进算法的有效性和优越性。本研究所提出的方法为装配式建筑施工机械设备的优化配置提供了一种实用工具,有助于实现低碳、高效及经济的施工机械设备管理。 展开更多
关键词 施工机械 装配式 多目标优化 量子粒群算法
在线阅读 下载PDF
QAPSO-BP算法及其在水电机组振动故障诊断中的应用 被引量:12
11
作者 程加堂 段志梅 熊燕 《振动与冲击》 EI CSCD 北大核心 2015年第23期177-181,201,共6页
针对水电机组振动故障耦合因素多、故障模式复杂等问题,提出了一种基于量子自适应粒子群优化BP神经网络(QAPSO-BP)的故障诊断模型。在QAPSO-BP算法中,利用量子计算中的叠加态特性和概率表达特性,增加了种群的多样性;根据各粒子的位置与... 针对水电机组振动故障耦合因素多、故障模式复杂等问题,提出了一种基于量子自适应粒子群优化BP神经网络(QAPSO-BP)的故障诊断模型。在QAPSO-BP算法中,利用量子计算中的叠加态特性和概率表达特性,增加了种群的多样性;根据各粒子的位置与速度信息,实现惯性因子的自适应调节;为避免陷入局部最优,在算法中加入变异操作;并以此来训练BP神经网络,实现网络的参数优化,进而构建了机组的振动故障诊断模型。仿真实例表明,与粒子群优化BP网络(PSO-BP)法和BP网络法相比,该算法具有较高的诊断准确度,适用于水电机组振动故障的模式识别。 展开更多
关键词 BP神经网络 量子自适应粒子群优化算法 水电机组 振动 故障诊断
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
12
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于ASAPSO混合算法的双脉冲变轨拦截轨迹优化
13
作者 杨慧婷 王庆辉 《空间控制技术与应用》 北大核心 2025年第1期75-84,共10页
针对航天器Lambert双脉冲变轨拦截问题,引入一种自适应模拟退火粒子群(ASAPSO)算法,旨在通过优化两次脉冲的速度增量总和,以实现航天器变轨所需的最小燃料消耗.首先,基于Lambert固定时间飞行定理构建了变轨拦截的数学模型,假设航天器在... 针对航天器Lambert双脉冲变轨拦截问题,引入一种自适应模拟退火粒子群(ASAPSO)算法,旨在通过优化两次脉冲的速度增量总和,以实现航天器变轨所需的最小燃料消耗.首先,基于Lambert固定时间飞行定理构建了变轨拦截的数学模型,假设航天器在沿初始轨道飞行一周内机动追逐目标,将两次脉冲变轨的时刻设为决策变量,将燃料消耗量作为适应度函数,并采用ASAPSO混合算法作为优化策略.其次,为了验证ASAPSO算法的有效性,针对同一模型分别采用了传统粒子群算法(PSO)、模拟退火粒子群算法(SAPSO)以及强化学习粒子群算法(RLPSO)进行优化,对比发现ASAPSO算法在较少的迭代次数内就能快速收敛至全局最优解,极大地减少了处理轨道拦截问题的计算量和时间.该算法结合了PSO的全局搜索能力和SA的局部优化特性,为航天器Lambert双脉冲变轨拦截问题提供了一种更为高效、精确的解决方案. 展开更多
关键词 Lambert变轨拦截 粒子群算法 模拟退火算法 参数自适应
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
14
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子群算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
基于WLS-AUKF混合算法的主动配电网联合状态估计
15
作者 满延露 刘敏 《电子科技》 2025年第2期93-102,共10页
响应负载和分布式能源的随机性和波动性、相量测量单元(Phasor Measurement Unit,PMU)配置的经济性需求对配电网状态估计提出了更高要求。文中提出了考虑PMU配置优化的加权最小二乘法(Weighted Least Squares,WLS)-自适应无迹卡尔曼滤波... 响应负载和分布式能源的随机性和波动性、相量测量单元(Phasor Measurement Unit,PMU)配置的经济性需求对配电网状态估计提出了更高要求。文中提出了考虑PMU配置优化的加权最小二乘法(Weighted Least Squares,WLS)-自适应无迹卡尔曼滤波(Adaptive Untraced Kalman Filtering,AUKF)的主动配电网联合状态估计。通过改进粒子群优化算法(Metropolis-Hastings Crossover Particle Swarm Optimization,MHCPSO)实现PMU优化配置,再结合WLS和AUKF提出联合状态估计。联合方式是WLS为AUKF馈送稳健的量测数据,AUKF为WLS提供先验预测值并补充量测冗余。仿真结果表明,在相同PMU数量下,MHCPSO算法比遗传粒子群算法(Genetic Algorithm Particle Swarm Optimization,GAPSO)估计精度更高。在相同状态估计误差情况下,MHCPSO算法配置的PMU数量比GAPSO算法可最多减少4个。在光伏(Photovoltaic,PV)/电动汽车(Electric Vehicles,EV)并网无序充放电和某一时刻负荷突变情况下,WLS-AUKF算法均体现出了比UKF(Untraced Kalman Filtering)算法更好的估计性能。在PMU配置优化、PV/VE并网以及负荷突变3个场景中体现出了WLS-AUKF状态估计的高精度、经济性、抗差性和稳健性。 展开更多
关键词 主动配电网 联合状态估计 加权最小二乘法 自适应无迹卡尔曼滤波 PMU优化配置 改进粒子群算法 两点交叉法 Metropolis-Hastings算法 遗传粒子群算法
在线阅读 下载PDF
基于自适应变异粒子群算法的风光储微网调度
16
作者 聂文龙 李再冉 +1 位作者 吴彩霞 王远 《山西建筑》 2025年第2期120-123,共4页
为克服传统粒子群算法在求解时容易形成局部最优,求解精度低的不足,提出了一种基于自适应变异粒子群优化的微电网调度求解方法。惯性权重采用自适应正态分布递减,随着迭代次数的增加更新粒子位置的移动策略,并且在算法后期引入变异环节... 为克服传统粒子群算法在求解时容易形成局部最优,求解精度低的不足,提出了一种基于自适应变异粒子群优化的微电网调度求解方法。惯性权重采用自适应正态分布递减,随着迭代次数的增加更新粒子位置的移动策略,并且在算法后期引入变异环节。为验证算法的有效性,文章与其他算法进行收敛性能对比,并对两种典型天气情况下的微网运行成本模型仿真求解,得到最优调度。算例结果表明,改进算法能够对粒子全局最优搜索优化,效果优于其他算法,可合理调配分布式电源出力时段,具有良好的可行性。 展开更多
关键词 微电网 调度 粒子群算法 自适应 变异
在线阅读 下载PDF
局部阴影遮挡下光伏系统最大功率点跟踪算法
17
作者 程相奥 王霆 +1 位作者 王菁菁 苗驰壮 《科学技术创新》 2025年第6期173-176,共4页
探究了局部阴影遮挡下光伏系统最大功率点跟踪算法,并对比算法的应用效果。传统的扰动观测法、全局扫描法等存在跟踪精度差、仅适用于无遮挡条件等弊端。粒子群算法可以满足局部阴影遮挡下最大功率点跟踪需求,但是无法兼顾寻优速度和寻... 探究了局部阴影遮挡下光伏系统最大功率点跟踪算法,并对比算法的应用效果。传统的扰动观测法、全局扫描法等存在跟踪精度差、仅适用于无遮挡条件等弊端。粒子群算法可以满足局部阴影遮挡下最大功率点跟踪需求,但是无法兼顾寻优速度和寻优精度,尤其是当粒子数量多且集中分布时收敛速度变的非常慢。改进的量子粒子群算法由于粒子初始位置完全随机且均匀分布,实现了全局寻优,保证寻优结果就是光伏系统的最大功率点,具有跟踪精度更高、寻优速度更快的优点。 展开更多
关键词 光伏系统 最大功率点跟踪 粒子群算法 量子粒子群算法
在线阅读 下载PDF
基于粒子群优化神经网络的机械臂跟踪控制
18
作者 屈晓宇 王家隆 《沈阳工程学院学报(自然科学版)》 2025年第1期48-54,共7页
针对智能消防机械臂在无人情况下的系统操作精度问题,提出基于粒子群优化RBF神经网络自适应的控制方法。首先,采用RBF神经网络自适应控制算法跟踪机械臂各关节的轨迹;其次,采用粒子群优化算法对RBF神经网络的权值进行更新,并重新构建RB... 针对智能消防机械臂在无人情况下的系统操作精度问题,提出基于粒子群优化RBF神经网络自适应的控制方法。首先,采用RBF神经网络自适应控制算法跟踪机械臂各关节的轨迹;其次,采用粒子群优化算法对RBF神经网络的权值进行更新,并重新构建RBF神经网络;最后,通过MATLAB仿真验证所提出控制器的有效性和可行性。结果表明:与一般RBF神经网络自适应控制器相比,粒子群优化RBF神经网络自适应控制器在路径跟踪上具有更高的控制精度。 展开更多
关键词 智能消防机械臂 神经网络 自适应 粒子群优化算法
在线阅读 下载PDF
基于BP神经网络的用户侧用电负荷自适应预测方法
19
作者 张传远 陈亚天 +2 位作者 高振伟 齐永忠 杨夏祎 《信息技术》 2025年第2期187-192,共6页
为了提高电力系统运行的可靠性和稳定性,准确预测用户侧用电负荷,提出了基于BP神经网络的用户侧用电负荷自适应预测方法。通过构建用户侧用电负荷数据分析模型,采集用户侧用电负荷数据并进行数据分类和分析。使用线性内插方法,对用户侧... 为了提高电力系统运行的可靠性和稳定性,准确预测用户侧用电负荷,提出了基于BP神经网络的用户侧用电负荷自适应预测方法。通过构建用户侧用电负荷数据分析模型,采集用户侧用电负荷数据并进行数据分类和分析。使用线性内插方法,对用户侧用电负荷残缺数据和误差数据进行修补。基于BP神经网络,采用粒子群算法对BP神经网络的初始权重和门限进行优化,实现用户侧用电负荷自适应预测。实验结果表明,文中方法的负荷预测结果更加接近于实际值,能够准确预测用户侧用电负荷。 展开更多
关键词 BP神经网络 用户侧 用电负荷 自适应预测 粒子群算法
在线阅读 下载PDF
基于量子粒子群优化的支持向量机模型反演土力学参数
20
作者 刘月华 朱庆闯 毕乃晨 《建筑施工》 2025年第3期361-365,共5页
岩土的力学参数常通过室内或原位试验测得,因受尺寸效应和人为因素影响,有时试验值与真实值之间偏差会很大。为探索更多、更准确的岩土力学参数的确定方法,利用量子粒子群算法优化支持向量机后对岩土物理力学参数进行反演。首先采用正... 岩土的力学参数常通过室内或原位试验测得,因受尺寸效应和人为因素影响,有时试验值与真实值之间偏差会很大。为探索更多、更准确的岩土力学参数的确定方法,利用量子粒子群算法优化支持向量机后对岩土物理力学参数进行反演。首先采用正交和均匀试验对需要反演的参数进行设计,然后结合有限差分软件FLAC3D得到学习样本和测试样本,通过量子粒子群优化(QPSO)向量机模型(SVM)建立反演参数与位移间复杂的非线性映射关系。把地铁站点基坑在不同开挖工况下的地表产生的水平及竖向位移的计算值与实测值进行对比分析,以验证该分析理论及方法的合理性。由于不同参数变化能使目标函数值产生不相同的变化结果,故分别采用竖向和水平位移对泥炭质土的压缩模量E_s和泊松比μ进行反演,研究结果表明取竖向位移对E_s进行反演,水平位移对μ进行反演,其结果更合理。此分析方法为岩土参数反演方法提供了一种新的思路。 展开更多
关键词 参数反演 支持向量机(SVM) 泥炭质土 量子粒子群优化(QPSO)
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部