期刊文献+

Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization 被引量:1

Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization
在线阅读 下载PDF
导出
摘要 This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises. This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第4期1196-1201,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No 10647141)
关键词 parameter estimation online chaos system quantum particle swarm optimization parameter estimation online, chaos system, quantum particle swarm optimization
作者简介 E—mail:hgaofei@gmail.com
  • 相关文献

参考文献14

  • 1Chen G R and Lü J H 2003 Dynamics of the Lorenz System Family: Analysis, Control and Synchronization (Beijing: Science Press) p66 .
  • 2Guan X P, Peng H P, Li L X and Wang Y Q 2001 Acta Phys. Sin. 50 26 .
  • 3Dai D, Ma X K, Li F C and You Y 2002 Acta Phys. Sin. 51 2459.
  • 4Li L X, Peng H P, Yuan Y X and Wang X D 2007 Acta Phys. Sin. 56 51 .
  • 5Wang D F 2005 Acta Phys. Sin. 54 1495.
  • 6Gao F and Tong H Q 2006 Acta Phys. Sin. 55 577 .
  • 7Yao X and Xu Y 2006 J. of Comp. Sci. and Tech. 21 1.
  • 8Eberhart R and Shi Y H 2000 Proceedings of the 2000 Congress on Evolutionary Computation (Piscataway, N J: IEEE) p84.
  • 9Parsopolos K E and Vrahatis M N 2002 Natural Computing 1 235.
  • 10Schweizer W 2001 Numerical quantum dynamics(Progress in Theoretical Chemistry and Physics) (Hingham, MA: Springer) p95.

同被引文献3

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部