期刊文献+

Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3

Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. An improved adaptive particle swarm optimization (IAPSO) algorithm is presented for solving the mini- mum makespan problem of job shop scheduling problem (JSP). Inspired by hormone modulation mechanism, an adaptive hormonal factor (HF), composed of an adaptive local hormonal factor ( Hi ) and an adaptive global hor- monal factor (H~), is devised to strengthen the information connection between particles. Using HF, each particle of the swarm can adjust its position self adaptively to avoid premature phenomena and reach better solution. The computational results validate the effectiveness and stability of the proposed IAPSO, which can not only find opti- mal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization (PSO) algorithms.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(51175262) the Research Fund for Doctoral Program of Higher Education of China(20093218110020) the Jiangsu Province Science Foundation for Excellent Youths(BK201210111) the Jiangsu Province Industry-Academy-Research Grant(BY201220116) the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan job shop scheduling problem (JSP) hormone modulation mechanism improved adaptive particleswarm optimization (IAPSO) algorithm minimum makespan
作者简介 Tang Dunbing, Professor, E-mail: d. tang@nuaa. edu. cn.
  • 相关文献

参考文献20

  • 1Garey M R,Johnson D S,Sethi R.The complexity of flow shop and job shop scheduling[J].Mathematics of Operations Research,1976,1(2):117-129.
  • 2Lian Z G,Jiao B,Gu X S.A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan[J].Applied Mathematics and Computation,2006,183(2):1008-1017.
  • 3Nowicki E,Smutnicki C.An advanced tabu search algorithm for the job shop problem[J].Journal of Scheduling,2005,8(2):145-159.
  • 4Leung Y,Gao Y,Xu Z B.Degree of population diversity-a perspective on premature convergence in genetic algorithms and its Markov-chain analysis[J].IEEE Transactions on Neural Networks,1997,8 (5):1165-1176.
  • 5Goncalves J F,Mendes J J M,Resende M G C.A hybrid genetic algorithm for the job shop scheduling problem[J].European Journal of Operational Research,2005,167(1):77-95.
  • 6Suresh R K,Mohanasundaram K M.Pareto archived simulated annealing for job shop scheduling with multiple objectives[J].The International Journal of Advanced Manufacturing Technology,2005,29 (1):184-196.
  • 7Xiang W,Lee H P.Ant colony intelligence in multiagent dynamic manufacturing scheduling[J].Engineering Applications of Artificial Intelligence,2008,21(1):73-85.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Press,1995:1942-1948.
  • 9XiaWeijun WuZhiming ZhangWei YangGenke.APPLYING PARTICLE SWARM OPTIMIZATION TO JOB-SHOPSCHEDULING PROBLEM[J].Chinese Journal of Mechanical Engineering,2004,17(3):437-441. 被引量:5
  • 10Liang Y C,Ge H W,Zhou Y,et al.A particle swarm optimization-based algorithm for job-shop scheduling problems[J].International Journal of Computational Methods,2005,2 (3):419-430.

二级参考文献19

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2彭传勇,高亮,邵新宇,周驰.求解作业车间调度问题的广义粒子群优化算法[J].计算机集成制造系统,2006,12(6):911-917. 被引量:30
  • 3Huang K L, Liao C J. Ant colony optimization combined with taboo search for the job shop scheduling problem [ J]. Computer & Operations Research, 2006, doi: 10. 1016/j. cor. 2006.07.003.
  • 4Lian Z G, Jiao B, Gu X S. A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan[J]. Applied Mathematics and Computation, 2006,183(2):1008- 1017.
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory [ C ]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, 10: 39- 43.
  • 6Shi Y, Eberhart R C. Empirical study of particle swarm optimization[ C]//Proceeding of Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1999, 1945-1949.
  • 7Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm[ C ]//Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics. Piscataway, NJ: IEEE Service Center, 1997, 4104-4109.
  • 8Mauro Dell’Amico,Marco Trubian.Applying tabu search to the job-shop scheduling problem[J].Annals of Operations Research.1993(3)
  • 9Adams J,Balas E,Zawack D.The shifting bottleneck procedure for job shop scheduling[].Management Science.1988
  • 10Eberhart R,Shi Y.Particle swarm optimization: developments, applications and resources[].In: IEEE International Conference on Evolutionary Computation.2001

共引文献11

同被引文献13

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部