The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses a...Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au–Pd bimetallic NPs is conducted by using the improved particle swarm optimization(IPSO) with quantum correction Sutton–Chen potentials(Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization(PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au–Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle(NP) presents a standardized Pd(core) Au(shell) structure.展开更多
A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly dec...A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence.展开更多
An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the late...An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the later phase of the basic PSO algorithm caused by the diversity scarcity of particles, a modified PSO algorithm is presented. For the basic PSO algorithm, the velocity of each particle is adjusted according to the inertia motion, the swarm previous best position and its own previous best position. However, in the improved PSO algorithm, each particle only learns from another randomly selected particle with higher performance, besides keeping the inertia motion. The inertia weight of the improved PSO algorithm is a random number. The modification decreases the uncertain parameters of the algorithm, simplifies the learning mechanism of the particle, and enhances the diversity of the swarm. Furthermore, a UAV attitude control system is built, and the improved PSO algorithm is applied in the optimized tuning of four controller parameters. Simulation results show that the improved PSO algorithm has stronger global searching ability than the common PSO algorithms, and obtains better UAV attitude control parameters.展开更多
Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relat...Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection.展开更多
A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunabi...A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunability of the GMRF is achieved by an MEMS-based physical movement (in the horizontal or vertical direction) combined with an incident angle in a certain range. The results show that the resonant wavelength tuning of 110 nm (140mm) is obtained by horizontal movement of 168 nm (vertical movement of 435 nm) combined with an about 11° variation of incident angle.展开更多
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi...An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.展开更多
We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method an...We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing.展开更多
In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a power optimization mod...In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a power optimization model for gas pipelines is developed and an improved particle swarm optimization algorithm is applied. Based on the testing of the parameters involved in the algorithm which need to be defined artificially, the values of these parameters have been recommended which can make the algorithm reach efficiently the approximate optimum solution with required accuracy. Some examples have shown that the relative error of the particle swarm optimization over ant colony optimization and dynamic programming is less than 1% and the computation time is much less than that of ant colony optimization and dynamic programming.展开更多
In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by appl...In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
A bionic shoulder joint with three degree-of-freedom(DOF)driven by pneumatic muscle actuator is proposed and its corresponding kinematic model is established.The bionic shoulder is optimized by particle swam optimizat...A bionic shoulder joint with three degree-of-freedom(DOF)driven by pneumatic muscle actuator is proposed and its corresponding kinematic model is established.The bionic shoulder is optimized by particle swam optimization(PSO)with the fitness standards that the requirements of rotation indexes are met and the fluctuation of motion is kept in the lowest resolution in a pneumatic muscle actuator range.Simulation considering rotation indexes only(first simulation)is compared with the one considering both rotation indexes and motion resolution(second simulation)subsequently.Mounting position of the pneumatic muscle actuators in bionic shoulder is optimized after initializing the same condition in simulations.Results show that the fluctuations of parameters are consistent,and the parameters of the first simulation have good convergence than those of the second one.With the increase of stretch rate of the pneumatic muscle actuator,the needed length of fixed link in the center of static platform decreases in optimization.展开更多
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat...Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.展开更多
In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capabili...In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.展开更多
Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a gen...Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO).展开更多
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ...Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniqu...This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.展开更多
Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order ...Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order fulldiscretization method(2ndFDM)-based 3-D stability prediction model for simultaneous optimization of spindle speed,axial cutting depth and radial cutting depth.The optimal machining parameters in each pass are obtained to achieve the minimum production time comprehensive considering constraints of 3-D stability,machine tool performance,tool life and machining requirements.A cloud drop-enabled particle swarm optimization(CDPSO)algorithm is proposed to solve the developed machining parameter optimization,and 13 benchmark problems are used to evaluate CDPSO algorithm.Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as comparable search quality and robustness.A demonstrative example is provided.展开更多
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474234 and 61403318)the Fundamental Research Funds for the Central Universities of China(Grant No.20720160085)
文摘Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au–Pd bimetallic NPs is conducted by using the improved particle swarm optimization(IPSO) with quantum correction Sutton–Chen potentials(Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization(PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au–Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle(NP) presents a standardized Pd(core) Au(shell) structure.
文摘A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence.
基金Supported by the Graduate Student Research Innovation Program of Jiangsu Province(CX08B-091Z)the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-06)~~
文摘An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the later phase of the basic PSO algorithm caused by the diversity scarcity of particles, a modified PSO algorithm is presented. For the basic PSO algorithm, the velocity of each particle is adjusted according to the inertia motion, the swarm previous best position and its own previous best position. However, in the improved PSO algorithm, each particle only learns from another randomly selected particle with higher performance, besides keeping the inertia motion. The inertia weight of the improved PSO algorithm is a random number. The modification decreases the uncertain parameters of the algorithm, simplifies the learning mechanism of the particle, and enhances the diversity of the swarm. Furthermore, a UAV attitude control system is built, and the improved PSO algorithm is applied in the optimized tuning of four controller parameters. Simulation results show that the improved PSO algorithm has stronger global searching ability than the common PSO algorithms, and obtains better UAV attitude control parameters.
基金Supported by the National Natural Science Foundation of China(61472161,61402195,61502198)
文摘Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection.
基金Project supported by the National High-Tech Research and Development Program of China(Grant No.2011 AA050518)
文摘A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunability of the GMRF is achieved by an MEMS-based physical movement (in the horizontal or vertical direction) combined with an incident angle in a certain range. The results show that the resonant wavelength tuning of 110 nm (140mm) is obtained by horizontal movement of 168 nm (vertical movement of 435 nm) combined with an about 11° variation of incident angle.
基金supported by the National Basic Research Program Project of China(No.2010CB732004)the National Natural Science Foundation Project of China(Nos.50934006 and41272304)+2 种基金the Graduated Students’ResearchInnovation Fund Project of Hunan Province of China(No.CX2011B119)the Scholarship Award for Excellent Doctoral Student of Ministry of Education of China and the Valuable Equipment Open Sharing Fund of Central South University(No.1343-76140000022)
文摘An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61178015,11304104 and 61575070
文摘We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing.
文摘In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a power optimization model for gas pipelines is developed and an improved particle swarm optimization algorithm is applied. Based on the testing of the parameters involved in the algorithm which need to be defined artificially, the values of these parameters have been recommended which can make the algorithm reach efficiently the approximate optimum solution with required accuracy. Some examples have shown that the relative error of the particle swarm optimization over ant colony optimization and dynamic programming is less than 1% and the computation time is much less than that of ant colony optimization and dynamic programming.
基金supported by the National Natural Science Foundation of China (No. 50490270, 50774077, 50574089, 50490273)the New Century Excellent Personnel Training Program of the Ministry of Education of China (No. NCET-06-0475)+1 种基金the Special Funds of Universities outstanding doctoral dissertation (No. 200760) the Basic Research Program of China (No. 2006CB202204-3)
文摘In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
基金supported by the National Natural Science Foundation of China(No.51405229)the Natural Science Foundation of Jiangsu Province of China (No. BK20151470)the NUAA Fundamental Research Fund(No.NS2013049)
文摘A bionic shoulder joint with three degree-of-freedom(DOF)driven by pneumatic muscle actuator is proposed and its corresponding kinematic model is established.The bionic shoulder is optimized by particle swam optimization(PSO)with the fitness standards that the requirements of rotation indexes are met and the fluctuation of motion is kept in the lowest resolution in a pneumatic muscle actuator range.Simulation considering rotation indexes only(first simulation)is compared with the one considering both rotation indexes and motion resolution(second simulation)subsequently.Mounting position of the pneumatic muscle actuators in bionic shoulder is optimized after initializing the same condition in simulations.Results show that the fluctuations of parameters are consistent,and the parameters of the first simulation have good convergence than those of the second one.With the increase of stretch rate of the pneumatic muscle actuator,the needed length of fixed link in the center of static platform decreases in optimization.
基金State Grid Corporation Science and Technology Project(520605190010).
文摘Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.
基金Sponsored by the Qing Lan Project of Jiangsu Province
文摘In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.
文摘Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO).
文摘Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647141)
文摘This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.
基金supported partially by the National Science Foundation of China(No.51775279)National Defense Basic Scientific Research Program of China(No. JCKY201605B006)+1 种基金Fundamental Research Funds for the Central Universities(No. NT2021019)Jiangsu Industry Foresight and Common Key Technology (No. BE2018127)
文摘Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order fulldiscretization method(2ndFDM)-based 3-D stability prediction model for simultaneous optimization of spindle speed,axial cutting depth and radial cutting depth.The optimal machining parameters in each pass are obtained to achieve the minimum production time comprehensive considering constraints of 3-D stability,machine tool performance,tool life and machining requirements.A cloud drop-enabled particle swarm optimization(CDPSO)algorithm is proposed to solve the developed machining parameter optimization,and 13 benchmark problems are used to evaluate CDPSO algorithm.Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as comparable search quality and robustness.A demonstrative example is provided.