The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the late...An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the later phase of the basic PSO algorithm caused by the diversity scarcity of particles, a modified PSO algorithm is presented. For the basic PSO algorithm, the velocity of each particle is adjusted according to the inertia motion, the swarm previous best position and its own previous best position. However, in the improved PSO algorithm, each particle only learns from another randomly selected particle with higher performance, besides keeping the inertia motion. The inertia weight of the improved PSO algorithm is a random number. The modification decreases the uncertain parameters of the algorithm, simplifies the learning mechanism of the particle, and enhances the diversity of the swarm. Furthermore, a UAV attitude control system is built, and the improved PSO algorithm is applied in the optimized tuning of four controller parameters. Simulation results show that the improved PSO algorithm has stronger global searching ability than the common PSO algorithms, and obtains better UAV attitude control parameters.展开更多
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi...An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.展开更多
We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method an...We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing.展开更多
In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a power optimization mod...In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a power optimization model for gas pipelines is developed and an improved particle swarm optimization algorithm is applied. Based on the testing of the parameters involved in the algorithm which need to be defined artificially, the values of these parameters have been recommended which can make the algorithm reach efficiently the approximate optimum solution with required accuracy. Some examples have shown that the relative error of the particle swarm optimization over ant colony optimization and dynamic programming is less than 1% and the computation time is much less than that of ant colony optimization and dynamic programming.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat...Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.展开更多
A bionic shoulder joint with three degree-of-freedom(DOF)driven by pneumatic muscle actuator is proposed and its corresponding kinematic model is established.The bionic shoulder is optimized by particle swam optimizat...A bionic shoulder joint with three degree-of-freedom(DOF)driven by pneumatic muscle actuator is proposed and its corresponding kinematic model is established.The bionic shoulder is optimized by particle swam optimization(PSO)with the fitness standards that the requirements of rotation indexes are met and the fluctuation of motion is kept in the lowest resolution in a pneumatic muscle actuator range.Simulation considering rotation indexes only(first simulation)is compared with the one considering both rotation indexes and motion resolution(second simulation)subsequently.Mounting position of the pneumatic muscle actuators in bionic shoulder is optimized after initializing the same condition in simulations.Results show that the fluctuations of parameters are consistent,and the parameters of the first simulation have good convergence than those of the second one.With the increase of stretch rate of the pneumatic muscle actuator,the needed length of fixed link in the center of static platform decreases in optimization.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capabili...In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.展开更多
Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a gen...Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO).展开更多
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic...Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints.展开更多
Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses a...Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au–Pd bimetallic NPs is conducted by using the improved particle swarm optimization(IPSO) with quantum correction Sutton–Chen potentials(Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization(PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au–Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle(NP) presents a standardized Pd(core) Au(shell) structure.展开更多
The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or...The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.展开更多
In order to improve the fine structure inversion ability of igneous rocks for the exploration of underlying strata, based on particle swarm optimization(PSO), we have developed a method for seismic wave impedance inve...In order to improve the fine structure inversion ability of igneous rocks for the exploration of underlying strata, based on particle swarm optimization(PSO), we have developed a method for seismic wave impedance inversion. Through numerical simulation, we tested the effects of different algorithm parameters and different model parameterization methods on PSO wave impedance inversion, and analyzed the characteristics of PSO method. Under the conclusions drawn from numerical simulation, we propose the scheme of combining a cross-moving strategy based on a divided block model and high-frequency filtering technology for PSO inversion. By analyzing the inversion results of a wedge model of a pitchout coal seam and a coal coking model with igneous rock intrusion, we discuss the vertical and horizontal resolution, stability and reliability of PSO inversion. Based on the actual seismic and logging data from an igneous area, by taking a seismic profile through wells as an example, we discuss the characteristics of three inversion methods, including model-based wave impedance inversion, multi-attribute seismic inversion based on probabilistic neural network(PNN) and wave impedance inversion based on PSO.And we draw the conclusion that the inversion based on PSO method has a better result for this igneous area.展开更多
Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative partic...Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.展开更多
This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniqu...This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.展开更多
Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order ...Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order fulldiscretization method(2ndFDM)-based 3-D stability prediction model for simultaneous optimization of spindle speed,axial cutting depth and radial cutting depth.The optimal machining parameters in each pass are obtained to achieve the minimum production time comprehensive considering constraints of 3-D stability,machine tool performance,tool life and machining requirements.A cloud drop-enabled particle swarm optimization(CDPSO)algorithm is proposed to solve the developed machining parameter optimization,and 13 benchmark problems are used to evaluate CDPSO algorithm.Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as comparable search quality and robustness.A demonstrative example is provided.展开更多
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati...Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.展开更多
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
基金Supported by the Graduate Student Research Innovation Program of Jiangsu Province(CX08B-091Z)the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-06)~~
文摘An improved particle swarm optimization (PSO) algorithm is investigated in the optimization of the attitude controller parameters of unmanned aerial vehicle (UAV). Considering the stagnation phenomenon in the later phase of the basic PSO algorithm caused by the diversity scarcity of particles, a modified PSO algorithm is presented. For the basic PSO algorithm, the velocity of each particle is adjusted according to the inertia motion, the swarm previous best position and its own previous best position. However, in the improved PSO algorithm, each particle only learns from another randomly selected particle with higher performance, besides keeping the inertia motion. The inertia weight of the improved PSO algorithm is a random number. The modification decreases the uncertain parameters of the algorithm, simplifies the learning mechanism of the particle, and enhances the diversity of the swarm. Furthermore, a UAV attitude control system is built, and the improved PSO algorithm is applied in the optimized tuning of four controller parameters. Simulation results show that the improved PSO algorithm has stronger global searching ability than the common PSO algorithms, and obtains better UAV attitude control parameters.
基金supported by the National Basic Research Program Project of China(No.2010CB732004)the National Natural Science Foundation Project of China(Nos.50934006 and41272304)+2 种基金the Graduated Students’ResearchInnovation Fund Project of Hunan Province of China(No.CX2011B119)the Scholarship Award for Excellent Doctoral Student of Ministry of Education of China and the Valuable Equipment Open Sharing Fund of Central South University(No.1343-76140000022)
文摘An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61178015,11304104 and 61575070
文摘We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing.
文摘In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a power optimization model for gas pipelines is developed and an improved particle swarm optimization algorithm is applied. Based on the testing of the parameters involved in the algorithm which need to be defined artificially, the values of these parameters have been recommended which can make the algorithm reach efficiently the approximate optimum solution with required accuracy. Some examples have shown that the relative error of the particle swarm optimization over ant colony optimization and dynamic programming is less than 1% and the computation time is much less than that of ant colony optimization and dynamic programming.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
基金State Grid Corporation Science and Technology Project(520605190010).
文摘Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.
基金supported by the National Natural Science Foundation of China(No.51405229)the Natural Science Foundation of Jiangsu Province of China (No. BK20151470)the NUAA Fundamental Research Fund(No.NS2013049)
文摘A bionic shoulder joint with three degree-of-freedom(DOF)driven by pneumatic muscle actuator is proposed and its corresponding kinematic model is established.The bionic shoulder is optimized by particle swam optimization(PSO)with the fitness standards that the requirements of rotation indexes are met and the fluctuation of motion is kept in the lowest resolution in a pneumatic muscle actuator range.Simulation considering rotation indexes only(first simulation)is compared with the one considering both rotation indexes and motion resolution(second simulation)subsequently.Mounting position of the pneumatic muscle actuators in bionic shoulder is optimized after initializing the same condition in simulations.Results show that the fluctuations of parameters are consistent,and the parameters of the first simulation have good convergence than those of the second one.With the increase of stretch rate of the pneumatic muscle actuator,the needed length of fixed link in the center of static platform decreases in optimization.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
基金Sponsored by the Qing Lan Project of Jiangsu Province
文摘In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles.
文摘Aiming to reduce the computational costs and converge to global optimum, a novel method is proposed to solve the optimization of a cost function in the estimation of direction of arrival (DOA). In this method, a genetic algorithm (GA) and fuzzy discrete particle swarm optimization (FDPSO) are applied to optimize the direction of arrival and power parameters of the mode simultaneously. Firstly, the GA algorithm is applied to make the solution fall into the global searching. Secondly, the FDPSO method is utilized to narrow down the search field. In FDPSO, a chaotic factor and a crossover method are added to speed up the convergence. This approach has been demonstrated through some computational simulations. It is shown that the proposed algorithm can estimate both the DOA and the powers accurately. It is more efficient than some present methods, such as the Newton-like algorithm, Akaike information critical (AIC), particle swarm optimization (PSO), and genetic algorithm with particle swarm optimization (GA-PSO).
基金the financial support of this work from the National Natural Science Foundation of China(Grant No.11972073,Grant No.51974357,and Grant No.52274027)supported by China Postdoctoral Science Foundation(Grant No.2022M713204)Scientific Research and Technology Development Project of China National Petroleum Corporation(Grant No.2121DJ2301).
文摘Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474234 and 61403318)the Fundamental Research Funds for the Central Universities of China(Grant No.20720160085)
文摘Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au–Pd bimetallic NPs is conducted by using the improved particle swarm optimization(IPSO) with quantum correction Sutton–Chen potentials(Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization(PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au–Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle(NP) presents a standardized Pd(core) Au(shell) structure.
基金supported by the National Natural science Foundation of China (No. 42127807)the Sichuan Science and Technology Program (No. 2020YJ0334)the Sichuan Science and Technology Breeding Program (No. 2022041)。
文摘The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.
基金provided by the National Science and Technology Major Project(No.2011ZX05004-004)China National Petroleum Corporation Key Projects(No.2014E2105)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In order to improve the fine structure inversion ability of igneous rocks for the exploration of underlying strata, based on particle swarm optimization(PSO), we have developed a method for seismic wave impedance inversion. Through numerical simulation, we tested the effects of different algorithm parameters and different model parameterization methods on PSO wave impedance inversion, and analyzed the characteristics of PSO method. Under the conclusions drawn from numerical simulation, we propose the scheme of combining a cross-moving strategy based on a divided block model and high-frequency filtering technology for PSO inversion. By analyzing the inversion results of a wedge model of a pitchout coal seam and a coal coking model with igneous rock intrusion, we discuss the vertical and horizontal resolution, stability and reliability of PSO inversion. Based on the actual seismic and logging data from an igneous area, by taking a seismic profile through wells as an example, we discuss the characteristics of three inversion methods, including model-based wave impedance inversion, multi-attribute seismic inversion based on probabilistic neural network(PNN) and wave impedance inversion based on PSO.And we draw the conclusion that the inversion based on PSO method has a better result for this igneous area.
基金supported by the National Key Research and Development Program Projects of China(No.2018YFC1504705)the National Natural Science Foundation of China(No.61731015)+1 种基金the Major instrument special project of National Natural Science Foundation of China(No.42027806)the Key Research and Development Program of Shaanxi(No.2022GY-331)。
文摘Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647141)
文摘This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.
基金supported partially by the National Science Foundation of China(No.51775279)National Defense Basic Scientific Research Program of China(No. JCKY201605B006)+1 种基金Fundamental Research Funds for the Central Universities(No. NT2021019)Jiangsu Industry Foresight and Common Key Technology (No. BE2018127)
文摘Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order fulldiscretization method(2ndFDM)-based 3-D stability prediction model for simultaneous optimization of spindle speed,axial cutting depth and radial cutting depth.The optimal machining parameters in each pass are obtained to achieve the minimum production time comprehensive considering constraints of 3-D stability,machine tool performance,tool life and machining requirements.A cloud drop-enabled particle swarm optimization(CDPSO)algorithm is proposed to solve the developed machining parameter optimization,and 13 benchmark problems are used to evaluate CDPSO algorithm.Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as comparable search quality and robustness.A demonstrative example is provided.
基金supported by the National Natural Science Foundation of China(Nos.12172078,51576026)Fundamental Research Funds for the Central Universities in China(No.DUT21LK04)。
文摘Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.