The robust stabilization problem for a class of uncertain discrete-time switched systems is presented. A predictive sliding mode control strategy is proposed, and a discrete-time reaching law is improved. By applying ...The robust stabilization problem for a class of uncertain discrete-time switched systems is presented. A predictive sliding mode control strategy is proposed, and a discrete-time reaching law is improved. By applying a predictive sliding surface and a reference trajectory, combining with the state feedback correction and rolling optimization method in the predictive control strategy, a predictive sliding mode controller is synthesized, which guarantees the asymptotic stability for the closed-loop systems. The designed control strategy has stronger robustness and chattering reduction property to conquer with the system uncertainties. In addition, a unique nonswitched sliding surface is designed. The reason is to avoid the repetitive jump of the trajectories of the state components of the closed-loop system between sliding surfaces because it might cause the possible instability. Finally, a numerical example is given to illustrate the effectiveness of the proposed theory.展开更多
The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with ti...The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.展开更多
The method of stabilizing switched systems based on the optimal control is applied,with all modes unstable,for a typical example of the multi-agent system.First,the optimal control method for stabilizing switched syst...The method of stabilizing switched systems based on the optimal control is applied,with all modes unstable,for a typical example of the multi-agent system.First,the optimal control method for stabilizing switched systems is introduced.For this purpose,a switching table rule procedure is constructed.This procedure is inspired by the optimal control that identifies the optimal trajectory for the switched systems.In the next step,the stability of a multi-agent system is studied,considering different unstable connection topologies.Finally,the optimal control method is successfully applied to an aircraft team,as an example of the multi-agent systems.Simulation results evaluate and confirm the successful application of this method in the aircraft team example.展开更多
基金supported by the Youth Science and Innovation Foundation of Harbin(2007RFQXG052).
文摘The robust stabilization problem for a class of uncertain discrete-time switched systems is presented. A predictive sliding mode control strategy is proposed, and a discrete-time reaching law is improved. By applying a predictive sliding surface and a reference trajectory, combining with the state feedback correction and rolling optimization method in the predictive control strategy, a predictive sliding mode controller is synthesized, which guarantees the asymptotic stability for the closed-loop systems. The designed control strategy has stronger robustness and chattering reduction property to conquer with the system uncertainties. In addition, a unique nonswitched sliding surface is designed. The reason is to avoid the repetitive jump of the trajectories of the state components of the closed-loop system between sliding surfaces because it might cause the possible instability. Finally, a numerical example is given to illustrate the effectiveness of the proposed theory.
基金supported by the National Natural Science Fundation of China(5147618751506221)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2015JQ51792015JM5207)
文摘The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.
文摘The method of stabilizing switched systems based on the optimal control is applied,with all modes unstable,for a typical example of the multi-agent system.First,the optimal control method for stabilizing switched systems is introduced.For this purpose,a switching table rule procedure is constructed.This procedure is inspired by the optimal control that identifies the optimal trajectory for the switched systems.In the next step,the stability of a multi-agent system is studied,considering different unstable connection topologies.Finally,the optimal control method is successfully applied to an aircraft team,as an example of the multi-agent systems.Simulation results evaluate and confirm the successful application of this method in the aircraft team example.