Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the...Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.展开更多
Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,inclu...Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications.展开更多
Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity ar...Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.展开更多
With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage techno...With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.展开更多
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat...Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.展开更多
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur...The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.展开更多
Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromat...Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization.展开更多
Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning p...Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.展开更多
After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of...After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of triaxial extension tests were conducted on sandstone under confining pressures of 10,30,50 and 70 MPa.Elastic energy and dissipated energy were separated by single unloading,the input energy u_(t),elastic energy u_(e),and dissipated energy u_(d)at different unloading stress levels were calculated by the integrating stress−strain curves.The results show that tensile cracks dominate fracture under lower confining pressure(10 MPa),and shear cracks play an increasingly important role in fracture as confining pressure increases(30,50 and 70 MPa).Based on the phenomenon that u_(e)and u_(d)increase linearly with increasing u_(t),a possible energy distribution mechanism of fracture mode transition under triaxial extension was proposed.In addition,it was found that peak energy storage capacity is more sensitive to confining pressure compared to elastic energy conversion capacity.展开更多
Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy c...Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy calculation method and energy self-inhibition model are introduced to explore their energy characteristics in this paper.The applicability of the energy self-inhibition model was verified by combining the data of FT cycles and uniaxial compression tests of intact and pre-cracked sandstone samples,as well as published reference data.In addition,the energy evolution characteristics of FT damaged rocks were discussed accordingly.The results indicate that the energy self-inhibition model perfectly characterizes the energy accumulation characteristics of FT damaged rocks under uniaxial compression before the peak strength and the energy dissipation characteristics before microcrack unstable growth stage.Taking the FT damaged cyan sandstone sample as an example,it has gone through two stages dominated by energy dissipation mechanism and energy accumulation mechanism,and the energy rate curve of the pre-cracked sample shows a fall-rise phenomenon when approaching failure.Based on the published reference data,it was found that the peak total input energy and energy storage limit conform to an exponential FT decay model,with corresponding decay constants ranging from 0.0021 to 0.1370 and 0.0018 to 0.1945,respectively.Finally,a linear energy storage equation for FT damaged rocks was proposed,and its high reliability and applicability were verified by combining published reference data,the energy storage coefficient of different types of rocks ranged from 0.823 to 0.992,showing a negative exponential relationship with the initial UCS(uniaxial compressive strength).In summary,the mechanism by which FT weakens the mechanical properties of rocks has been revealed from an energy perspective in this paper,which can provide reference for related issues in cold regions.展开更多
In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and...In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics.展开更多
To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were pe...To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.展开更多
Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this wo...Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.展开更多
随着电动汽车的大规模入网,其无序充电使得负荷峰谷差距进一步激增,给电力系统的稳定运行带来了负面影响,因此提出1种计及电动汽车负荷和电池储能系统的削峰填谷两阶段优化调度策略。首先,以用户充电成本和负荷绝对峰谷差最小为目标建...随着电动汽车的大规模入网,其无序充电使得负荷峰谷差距进一步激增,给电力系统的稳定运行带来了负面影响,因此提出1种计及电动汽车负荷和电池储能系统的削峰填谷两阶段优化调度策略。首先,以用户充电成本和负荷绝对峰谷差最小为目标建立电动汽车有序充电调度模型,利用改进粒子群优化算法对模型进行求解,促使电动汽车避峰充电;其次,以负荷方差和储能寿命综合成本最小为目标建立储能系统削峰填谷优化调度模型,采用改进哈里斯鹰优化HHO(Harris Hawks optimization)算法对模型进行求解,从而减小负荷峰谷差,并通过削峰填谷评价指标对优化结果进行评估和分析;最后,以某电网实测负荷功率为例进行仿真实验,结果表明,所提两阶段优化调度策略使得负荷峰值降低了约147 k W,负荷谷值上升了约223 k W,峰谷差降低了约46.73%,能够有效改善负荷曲线,缓解负荷高峰期电力供应紧张的压力,保证了电网的安全、稳定运行。展开更多
When the capacitor cell is discharged in the short-circuit mode, the current pulse amplitude and duration are maximal. Therefore, this mode is the most severe for discharge switches of capacitive energy storage. The c...When the capacitor cell is discharged in the short-circuit mode, the current pulse amplitude and duration are maximal. Therefore, this mode is the most severe for discharge switches of capacitive energy storage. The characteristics of the transient process of the discharge capacitive energy storage and the current loads acting in the facility discharge circuit have been defined for this mode. The test bench for definition of the LTT(Light Triggered Thyristors) loading capacity is described. The limiting characteristics have been experimentally obtained for LTT, at which there emerges the thermo-generation peak.The process of OFF-ON switching of LTTs has been investigated, the necessity is shown to use the speedup R-C circuits to ensure fast and stable transition of LTT into the conducting state. The design of the switch unit for the capacitive energy storage comprising LTTs and crowbar diodes is described, and the transient processes of current switching in crowbar diodes are considered. The tests carried out during switching of pul se current up to 100 kA at a voltage of 6 kV have confirmed the workability of the switch unit.展开更多
To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) metho...To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.展开更多
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg...This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.展开更多
文摘Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.
基金supported by National Natural Science Foundation of China(52272039,U23B2075,51972168)Key Research and Development Program in Jiangsu Province(BE2023085)Natural Science Foundation of Jiangsu Province of China(BK20231406)。
文摘Three-dimensional(3D)graphene monoliths are a new carbon material,that has tremendous potential in the fields of energy conversion and storage.They can solve the limitations of two-dimensional(2D)graphene sheets,including interlayer restacking,high contact resistance,and insufficient pore accessibility.By constructing interconnected porous networks,3D graphenes not only retain the intrinsic advantages of 2D graphene sheets,such as high specific surface area,excellent electrical and thermal conductivities,good mechanical properties,and outstanding chemical stability,but also enable efficient mass transport of external fluid species.We summarize the fabrication methods for 3D graphenes,with a particular focus on their applications in energy-related systems.Techniques including chemical reduction assembly,chemical vapor deposition,3D printing,chemical blowing,and zinc-tiered pyrolysis have been developed to change their pore structure and elemental composition,and ways in which they can be integrated with functional components.In terms of energy conversion and storage,they have found broad use in buffering mechanical impacts,suppressing noise,photothermal conversion,electromagnetic shielding and absorption.They have also been used in electrochemical energy systems such as supercapacitors,secondary batteries,and electrocatalysis.By reviewing recent progress in structural design and new applications,we also discuss the problems these materials face,including scalable fabrication and precise pore structure control,and possible new applications.
基金西南大学中央高校基本科研业务费项目(SWU-KT22030)重庆市教育委员会科学技术研究项目(KJQN202300205)Deutsche Forschungsgemeinschaft(DFG,German Research Foundation,457444676).
文摘Diamond combines many unique properties,including high stability,strong optical dispersion,excellent mechanical strength,and outstanding thermal conductivity.Its structure,surface groups,and electrical conductivity are also tunable,increasing its functional versatility.These make diamond and its related materials,such as its composites,highly promising for various applications in energy fields.This review summarizes recent advances and key achievements in energy storage and conversion,covering electrochemical energy storage(e.g.,batteries and supercapacitors),electrocatalytic energy conversion(e.g.,CO_(2)and nitrogen reduction reactions),and solar energy conversion(e.g.,photo-(electro)chemical CO_(2)and nitrogen reduction reactions,and solar cells).Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.
基金supported by the Natural Science Basic Research Plan in the Shaanxi Province of China(No.2023-JC-ZD-25)Shaanxi Province(Qin ChuangYuan)“Scientist+Engineer”Team Building(No.2022KXJ-040)+1 种基金Shaanxi Provincial Department of Education Key Scientific Research Project(No.22JY024)Science and Technology Guidance Project Plan of China National Textile and Apparel Council(No.2022038,2023018).
文摘With the acceleration of advanced industrialization and urbanization,the environment is deteriorating rapidly,and non-renewable energy resources are depleted.The gradual advent of potential clean energy storage technologies is particularly urgent.Electrochemical energy storage technologies have been widely used in multiple fields,especially supercapacitors and rechargeable batteries,as vital elements of storing renewable energy.In recent years,two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties,large specific surface area,and tunability.Based on the layered materials of MXene,researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level.It is worth noting that compared with other two-dimensional materials,MXene has more active sites on the basal plane,showing excellent catalytic performance.In contrast,other two-dimensional materials have catalytic activity only at the edge sites.This article comprehensively overviews the synthesis process,structural characteristics,modification methods for MXene-based polymer materials,and their applications in electrochemical energy storage.It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.
文摘Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.
文摘The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
文摘Petroleum asphalt,an important by-product of the petrochemical industry,has diverse applications but often suffers from low industrial added value.Because of its low cost,high carbon content,and high polycyclic aromatic hydrocarbon content,appropriate modification can increase its value and expand its energy storage applications.Current research progress on the common preparation methods of petroleum asphalt-based carbon materials,including template-assisted pyrolysis,molten salt treatment,activation,heteroatom doping,and pre-oxidation is reviewed,and its use in supercapacitors and alkali metal ion batteries,is also elaborated.Feasible solutions for the current problems with petroleum asphalt are proposed,with the aim of providing insights into its high value-added utilization.
基金Project(202208340045)supported by the China Scholarship Council FundProject(U21A20110)supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China+1 种基金Project(EUCMR202201)supported by the Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources,ChinaProject(2023cxcyzx063)supported by the Anhui Province New Era Talent Education Project,China。
文摘Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.
基金Project(52074352)supported by the National Natural Science Foundation of ChinaProject(2023JJ30680)supported by the National Science and Technology Major Project of China。
文摘After excavation,some of the surrounding rock mass is in a state of triaxial extension,exhibiting tensile or shear fracture modes.To study the energy mechanism of tensile fracture turning to shear fracture,a series of triaxial extension tests were conducted on sandstone under confining pressures of 10,30,50 and 70 MPa.Elastic energy and dissipated energy were separated by single unloading,the input energy u_(t),elastic energy u_(e),and dissipated energy u_(d)at different unloading stress levels were calculated by the integrating stress−strain curves.The results show that tensile cracks dominate fracture under lower confining pressure(10 MPa),and shear cracks play an increasingly important role in fracture as confining pressure increases(30,50 and 70 MPa).Based on the phenomenon that u_(e)and u_(d)increase linearly with increasing u_(t),a possible energy distribution mechanism of fracture mode transition under triaxial extension was proposed.In addition,it was found that peak energy storage capacity is more sensitive to confining pressure compared to elastic energy conversion capacity.
基金Project(52174088)supported by the National Natural Science Foundation of ChinaProject(104972024JYS0007)supported by the Independent Innovation Research Fund Graduate Free Exploration,Wuhan University of Technology,China。
文摘Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy calculation method and energy self-inhibition model are introduced to explore their energy characteristics in this paper.The applicability of the energy self-inhibition model was verified by combining the data of FT cycles and uniaxial compression tests of intact and pre-cracked sandstone samples,as well as published reference data.In addition,the energy evolution characteristics of FT damaged rocks were discussed accordingly.The results indicate that the energy self-inhibition model perfectly characterizes the energy accumulation characteristics of FT damaged rocks under uniaxial compression before the peak strength and the energy dissipation characteristics before microcrack unstable growth stage.Taking the FT damaged cyan sandstone sample as an example,it has gone through two stages dominated by energy dissipation mechanism and energy accumulation mechanism,and the energy rate curve of the pre-cracked sample shows a fall-rise phenomenon when approaching failure.Based on the published reference data,it was found that the peak total input energy and energy storage limit conform to an exponential FT decay model,with corresponding decay constants ranging from 0.0021 to 0.1370 and 0.0018 to 0.1945,respectively.Finally,a linear energy storage equation for FT damaged rocks was proposed,and its high reliability and applicability were verified by combining published reference data,the energy storage coefficient of different types of rocks ranged from 0.823 to 0.992,showing a negative exponential relationship with the initial UCS(uniaxial compressive strength).In summary,the mechanism by which FT weakens the mechanical properties of rocks has been revealed from an energy perspective in this paper,which can provide reference for related issues in cold regions.
文摘In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics.
基金Projects(41877272,51974359)supported by the National Natural Science Foundation of China。
文摘To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.
基金Project(8212033)supported by the Natural Science Foundation of Beijing,ChinaProject(BBJ2023051)supported by the Fundamental Research Funds of China University of Mining and Technology-BeijingProject(SKLGDUEK202221)supported by the Innovation Fund Research Project,China。
文摘Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.
文摘随着电动汽车的大规模入网,其无序充电使得负荷峰谷差距进一步激增,给电力系统的稳定运行带来了负面影响,因此提出1种计及电动汽车负荷和电池储能系统的削峰填谷两阶段优化调度策略。首先,以用户充电成本和负荷绝对峰谷差最小为目标建立电动汽车有序充电调度模型,利用改进粒子群优化算法对模型进行求解,促使电动汽车避峰充电;其次,以负荷方差和储能寿命综合成本最小为目标建立储能系统削峰填谷优化调度模型,采用改进哈里斯鹰优化HHO(Harris Hawks optimization)算法对模型进行求解,从而减小负荷峰谷差,并通过削峰填谷评价指标对优化结果进行评估和分析;最后,以某电网实测负荷功率为例进行仿真实验,结果表明,所提两阶段优化调度策略使得负荷峰值降低了约147 k W,负荷谷值上升了约223 k W,峰谷差降低了约46.73%,能够有效改善负荷曲线,缓解负荷高峰期电力供应紧张的压力,保证了电网的安全、稳定运行。
文摘When the capacitor cell is discharged in the short-circuit mode, the current pulse amplitude and duration are maximal. Therefore, this mode is the most severe for discharge switches of capacitive energy storage. The characteristics of the transient process of the discharge capacitive energy storage and the current loads acting in the facility discharge circuit have been defined for this mode. The test bench for definition of the LTT(Light Triggered Thyristors) loading capacity is described. The limiting characteristics have been experimentally obtained for LTT, at which there emerges the thermo-generation peak.The process of OFF-ON switching of LTTs has been investigated, the necessity is shown to use the speedup R-C circuits to ensure fast and stable transition of LTT into the conducting state. The design of the switch unit for the capacitive energy storage comprising LTTs and crowbar diodes is described, and the transient processes of current switching in crowbar diodes are considered. The tests carried out during switching of pul se current up to 100 kA at a voltage of 6 kV have confirmed the workability of the switch unit.
基金Project(50606007) supported by the National Natural Science Foundation of China
文摘To solve the fundamental problem of insufficient heat available during defrosting while ensuring the efficient and safe system operation for air-source heat pumps (ASHPs). A novel reverse-cycle defrosting (NRCD) method based on thermal energy storage to eliminate frost off the outdoor coil surface was developed. Comparative experiments using both the stand reverse cycle defrosting (SRCD) method and the NRCD method were carried out on an experimental ASHP unit with a nominal 2.5 kW heating capacity. The results indicate that during defrosting operation, using the NRCD method improves discharge and suction pressures by 0.24 MPa and 0.19 MPa, respectively, shortens defrosting duration by 60%, and reduces the defrosting energy consumption by 48.1% in the experimental environment, compared with those by the use of SRCD method. Therefore, using the NRCD method can shorten the defrosting duration, improve the indoor thermal comfort, and reduce the defrosting energy consumption in defrosting.
文摘This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.