It was shown from the experiment that glutamine synthetase activity (GSA) in both leaf blades and roots under different nitrogen levels rose rapidly to reach its peak from seedling stage to foliage rapid growth stage ...It was shown from the experiment that glutamine synthetase activity (GSA) in both leaf blades and roots under different nitrogen levels rose rapidly to reach its peak from seedling stage to foliage rapid growth stage and declined to its lowest level at the latter stage of root rapid growth, and then increased slightly. GSA in leaf blades had positive correlation with nitrogen level during the whole period of growth. GSA in roots showed the same tendency as it in leaf blades at the early middle stage of growth, but at the latter stage of growth, no positive correlation was established. GSA in leaf blades was the strongest compared with crowns, petioles and roots, and could represent the highest enzyme activity of the whole plant. GSA had quadratic curvilinear correlation with root yield and sugar production. GSA in leaf blades had significant positive correlation with α-NH2-N at the foliage rapid growth stage.展开更多
利用RT-PCR技术,克隆了甜菜谷胱甘肽合成酶基因(BvGS;LOC104891052),其CDS全长为1 662 bp,编码553个氨基酸。以Beta vulgaris Actin 1为内参基因,半定量RT-PCR的研究结果表明:与0 mM CdCl_2的对照处理相比,在0.5、1.0、1.5、2.0 mM CdC...利用RT-PCR技术,克隆了甜菜谷胱甘肽合成酶基因(BvGS;LOC104891052),其CDS全长为1 662 bp,编码553个氨基酸。以Beta vulgaris Actin 1为内参基因,半定量RT-PCR的研究结果表明:与0 mM CdCl_2的对照处理相比,在0.5、1.0、1.5、2.0 mM CdCl_2的逆境胁迫下,甜菜BvGS基因的表达量随着处理浓度的增加而逐渐增大。这说明BvGS基因在其转录表达水平上受到了镉胁迫的诱导,并与镉逆境存在着一定的应答关系。展开更多
文摘It was shown from the experiment that glutamine synthetase activity (GSA) in both leaf blades and roots under different nitrogen levels rose rapidly to reach its peak from seedling stage to foliage rapid growth stage and declined to its lowest level at the latter stage of root rapid growth, and then increased slightly. GSA in leaf blades had positive correlation with nitrogen level during the whole period of growth. GSA in roots showed the same tendency as it in leaf blades at the early middle stage of growth, but at the latter stage of growth, no positive correlation was established. GSA in leaf blades was the strongest compared with crowns, petioles and roots, and could represent the highest enzyme activity of the whole plant. GSA had quadratic curvilinear correlation with root yield and sugar production. GSA in leaf blades had significant positive correlation with α-NH2-N at the foliage rapid growth stage.
文摘利用RT-PCR技术,克隆了甜菜谷胱甘肽合成酶基因(BvGS;LOC104891052),其CDS全长为1 662 bp,编码553个氨基酸。以Beta vulgaris Actin 1为内参基因,半定量RT-PCR的研究结果表明:与0 mM CdCl_2的对照处理相比,在0.5、1.0、1.5、2.0 mM CdCl_2的逆境胁迫下,甜菜BvGS基因的表达量随着处理浓度的增加而逐渐增大。这说明BvGS基因在其转录表达水平上受到了镉胁迫的诱导,并与镉逆境存在着一定的应答关系。