It is now thought that atherosclerosis,although due to enhanced lipid deposition,is mainly the result of a series inflammatory process.Total saponins of Aralia elata(Miq) Seem(TASAES) from the Chinese traditional herb...It is now thought that atherosclerosis,although due to enhanced lipid deposition,is mainly the result of a series inflammatory process.Total saponins of Aralia elata(Miq) Seem(TASAES) from the Chinese traditional herb Longya Araliachinensis L.,a folk medicine used for treating various diseases,increasing energy and improving the body′s ability to prevent hypoxia in Asian countries has attracted widespread attention.However,the ability of TASAES on inflammation-triggered vascular endothelial cell injury,a key early event in the pathogenesis of atherosclerosis,and its potential mechanisms of this protection have never been demonstrated.The present study determined the anti-inflammatory and anti-apoptoticactivities and protective mechanisms of the total aralosides of Araliaelata(Miq) Seem(TASAES) ameliorate tumor necrosis factor-α(TNF-α)-induced human umbilical vein endothelial cells(HUVECs) injury.Our results indicate that TASAES pretreatment provided cytoprotective effects by suppressing TNF-α-induced HUVECs apoptosis,mitochondrial membrane depolarization,caspase-3 activation,and modulation of inflammatory factors(IL-6,MCP-1 and VCAM-1),meanwhile inhibiting NF-κB transcription.Furthermore,the effect was correlated with the activation of the PI3K/Akt signal pathway.Blocking Akt activation with the PI3K inhibitor LY294002 effectively reversed the protective effect of TASAES against TNF-α-induced cell apoptosis.Moreover,the PI3K inhibitor partially blocked the effects of TASAES on the increasing of Bcl-2 and Bcl-xl protein expression,and inactivation of Bax protein expression.In conclusion,the results showed that TASAES decreased the inflammation and apoptosis of HUVECs caused by TNF-α treatment,and PI3K played a crucial role in enhancing cell sur.vival during this process.展开更多
Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is asso...Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is associated with the development of various tumors.We use bioinformatics analysis to identify whether KCNN3 regulates the occurrence and development of stomach adenocarcinoma(STAD)as a prognostic target.By analyzing the Human Protein Atlas(HPA)database and The Cancer Genome Atlas(TCGA)database,we found that the protein and mRNA levels of KCNN3 were dramatically reduced in STAD,and TCGA database showed that KCNN3 significantly correlated with the prognosis and clinical features of STAD.In addition,we found that high expression of KCNN3 in STAD reduced the IC 50 of several drugs in STAD cells,suggesting that high expression of KCNN3 correlated with the drug sensitivity of STAD.To investigate the underlying biological mechanism,we identified a potential KCNN3 interaction factor,tumor necrosis factor receptor superfamily member 7(CD27/TNFRSF7),which is expressed at low levels in STAD.RT-qPCR and Western blotting confirmed that KCNN3 and CD27 positively correlated with each other at protein and mRNA levels,and co-immunoprecipitation and immunofluorescence experiments confirmed that the two proteins interact and colocalize in the cytoplasm.Moreover,we confirmed the inhibitory effect of KCNN3 on the proliferation,migration and invasion of human STAD cells in vitro and in vivo through subcutaneous tumorigenesis and cellular experiments.Furthermore,GO/KEGG enrichment analysis showed that KCNN3 was enriched in signaling pathways regulating the immune response and calcium or metal ion transport.Lastly,we verified through cell co-culture,RT-qPCR and CCK8 assays that high expression of KCNN3 can promote the increase of T cell activating factor and the killing effect of T cells on STAD cells.Therefore,our results suggest that KCNN3 is a potential inhibitory factor affecting the occurrence and progression of STAD.展开更多
Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production...Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.展开更多
As a key mediator of normal physiological angiogenesis, vascular endothelial growth factor(VEGF) has been regarded as an emancipator to plastic surgeon, and yet a misfortune to oncology surgeon, due to its singular bi...As a key mediator of normal physiological angiogenesis, vascular endothelial growth factor(VEGF) has been regarded as an emancipator to plastic surgeon, and yet a misfortune to oncology surgeon, due to its singular biological effect. Therefore in some clinical cases, especially for some malignant tumor patients having endured radical surgery and being craving for a reconstructive surgery, VEGF plays a role full of paradoxes. To make a clinical balance, we should find a point to inhibit tumor cell from utilizing VEGF and make a permission to normal tissues to employ it.展开更多
基金supported by National Natural Science Foundation of China(81374011) CAMS Innovation Fund for Medical Sciences(CIFMS)(2016-I2M-1-012)
文摘It is now thought that atherosclerosis,although due to enhanced lipid deposition,is mainly the result of a series inflammatory process.Total saponins of Aralia elata(Miq) Seem(TASAES) from the Chinese traditional herb Longya Araliachinensis L.,a folk medicine used for treating various diseases,increasing energy and improving the body′s ability to prevent hypoxia in Asian countries has attracted widespread attention.However,the ability of TASAES on inflammation-triggered vascular endothelial cell injury,a key early event in the pathogenesis of atherosclerosis,and its potential mechanisms of this protection have never been demonstrated.The present study determined the anti-inflammatory and anti-apoptoticactivities and protective mechanisms of the total aralosides of Araliaelata(Miq) Seem(TASAES) ameliorate tumor necrosis factor-α(TNF-α)-induced human umbilical vein endothelial cells(HUVECs) injury.Our results indicate that TASAES pretreatment provided cytoprotective effects by suppressing TNF-α-induced HUVECs apoptosis,mitochondrial membrane depolarization,caspase-3 activation,and modulation of inflammatory factors(IL-6,MCP-1 and VCAM-1),meanwhile inhibiting NF-κB transcription.Furthermore,the effect was correlated with the activation of the PI3K/Akt signal pathway.Blocking Akt activation with the PI3K inhibitor LY294002 effectively reversed the protective effect of TASAES against TNF-α-induced cell apoptosis.Moreover,the PI3K inhibitor partially blocked the effects of TASAES on the increasing of Bcl-2 and Bcl-xl protein expression,and inactivation of Bax protein expression.In conclusion,the results showed that TASAES decreased the inflammation and apoptosis of HUVECs caused by TNF-α treatment,and PI3K played a crucial role in enhancing cell sur.vival during this process.
文摘Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is associated with the development of various tumors.We use bioinformatics analysis to identify whether KCNN3 regulates the occurrence and development of stomach adenocarcinoma(STAD)as a prognostic target.By analyzing the Human Protein Atlas(HPA)database and The Cancer Genome Atlas(TCGA)database,we found that the protein and mRNA levels of KCNN3 were dramatically reduced in STAD,and TCGA database showed that KCNN3 significantly correlated with the prognosis and clinical features of STAD.In addition,we found that high expression of KCNN3 in STAD reduced the IC 50 of several drugs in STAD cells,suggesting that high expression of KCNN3 correlated with the drug sensitivity of STAD.To investigate the underlying biological mechanism,we identified a potential KCNN3 interaction factor,tumor necrosis factor receptor superfamily member 7(CD27/TNFRSF7),which is expressed at low levels in STAD.RT-qPCR and Western blotting confirmed that KCNN3 and CD27 positively correlated with each other at protein and mRNA levels,and co-immunoprecipitation and immunofluorescence experiments confirmed that the two proteins interact and colocalize in the cytoplasm.Moreover,we confirmed the inhibitory effect of KCNN3 on the proliferation,migration and invasion of human STAD cells in vitro and in vivo through subcutaneous tumorigenesis and cellular experiments.Furthermore,GO/KEGG enrichment analysis showed that KCNN3 was enriched in signaling pathways regulating the immune response and calcium or metal ion transport.Lastly,we verified through cell co-culture,RT-qPCR and CCK8 assays that high expression of KCNN3 can promote the increase of T cell activating factor and the killing effect of T cells on STAD cells.Therefore,our results suggest that KCNN3 is a potential inhibitory factor affecting the occurrence and progression of STAD.
文摘Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.
文摘As a key mediator of normal physiological angiogenesis, vascular endothelial growth factor(VEGF) has been regarded as an emancipator to plastic surgeon, and yet a misfortune to oncology surgeon, due to its singular biological effect. Therefore in some clinical cases, especially for some malignant tumor patients having endured radical surgery and being craving for a reconstructive surgery, VEGF plays a role full of paradoxes. To make a clinical balance, we should find a point to inhibit tumor cell from utilizing VEGF and make a permission to normal tissues to employ it.